

EEvveenntt MMaannaaggeemmeenntt
UUsseerr GGuuiiddee

 Table of Content

Table of Content

CHAPTER 1 INTRODUCTION ...1

1.1. Event.. 3

1.2. Events Management System.. 4

1.3. EMS with Sekar.. 6

CHAPTER 2 GETTING STARTED ...9

2.1. Preparing zJOS-XDI System... 9
22..11..11 zJOS-XDI Datasets.. 9
22..11..22 zJOS-XDI JCL Procedures.. 13

2.2. Starting and Stopping zJOS.. 18

2.3. Preparing Sekar ... 21

2.4. Starting and Stopping Sekar ... 23

2.5. Preparing National Holiday Table.. 24

2.6. Preparing System Startup Table... 27

CHAPTER 3 WORKING WITH SEKAR PARAMETERS31

3.1. Managed Event Table .. 32

3.2. Event Entry... 35
33..22..11 Event verb and System .. 37
33..22..22 Timeframe and Timespec .. 38

3.3. Action Table.. 42

3.4. Action Entry ... 44

3.5. Action Variables ... 47
33..55..11 &ARG Variable... 47
33..55..22 &UID and &JOB Variables... 50

3.6. Applying Sekar Parameters .. 50

CHAPTER 4 CONTROLLING SEKAR51

4.1. Status Information ... 51
44..11..11 Products Status Information .. 52

Table of Content

44..11..22 Statistics Information .. 54

4.2. Reloading Sekar Parameters... 56

CHAPTER 5 INTEGRATED AUTOMATION59

5.1. Integrated zJOS Network.. 59
55..11..11 Hardware Requirements .. 59
55..11..22 Software Requirements ... 60

5.2. Sekar for Integrated zJOS Network... 61
55..22..11 Preparing zJOS Server... 62
55..22..22 Preparing zJOS Agent for z/OS... 65

5.3. Sekar Agent for z/OS ... 67
55..33..11 Starting and Stopping zJOS Agent .. 68
55..33..22 Connecting and Disconnecting Agent ... 70
55..33..33 Controlling zJOS Agent .. 71
55..33..44 Remote Command... 72
55..33..55 Remote Job Submission .. 74

5.4. The Goal of Integrated Automation ... 74

CHAPTER 6 IMPLEMENTING YOUR INNOVATION WITH SEKAR77

6.1. Innovation with Command.. 77

6.2. Standard XDI Rule .. 79
66..22..11 Example... 81

6.3. Innovation with Rule.. 82
66..33..11 Rule Programming .. 83
66..33..22 Creating Your Own XDIRULE... 87

6.4. zJOS Supported Rexx Functions .. 87
66..44..11 zjaxfer() ... 88
66..44..22 zjcal()... 88
66..44..33 zjcmd() or xcommand()... 90
66..44..44 zjevent()... 91
66..44..55 zjholday() .. 93
66..44..66 zjpuspa() .. 94
66..44..77 zjsekar()... 95
66..44..88 zjserver().. 96
66..44..99 zjset()... 97
66..44..1100 zjstate() ... 100
66..44..1111 zjwait().. 101
66..44..1122 zjwto()... 102
66..44..1133 zjwtor() ... 103

6.5. Using zJOS Rexx Functions .. 104
66..55..11 Non-rule Rexx Programming .. 104
66..55..22 Using zjset() and zjevent() in Your Program... 105

 Table of Content

CHAPTER 7 USING ZJOS CONTROL PANEL107

7.1. Starting and Stopping zJOS.. 108

7.2. Issuing Sekar Command.. 112

7.3. Obtaining Helps.. 113
77..33..11 Common Help Information ... 114
77..33..22 Field-specific Help Information .. 115

CHAPTER 8 COMMANDS AND MESSAGES REFERENCE117

8.1. Sekar Commands Facilities ... 117
88..11..11 Entering Command via zJOS Subsystem .. 117
88..11..22 Entering Command via MODIFY ... 117
88..11..33 Entering Command via zJOS Control Panel ... 118

8.2. Sekar Commands Reference ... 118
88..22..11 LOAD request ... 118
88..22..22 RELOAD request .. 119
88..22..33 START request.. 119
88..22..44 STOP request... 120

8.3. zJOS System Commands Facilities... 120

8.4. zJOS System Commands Reference ... 120
88..44..11 ASCB request .. 121
88..44..22 HELP request .. 121
88..44..33 LIST request .. 121
88..44..44 RCMD request... 121
88..44..55 RJOB request... 122
88..44..66 SHUTDOWN request.. 122
88..44..77 START request.. 122
88..44..88 WTO or MSG request ... 123

8.5. zJOS Agent Commands Facilities... 123

8.6. Agent Commands Reference ... 123
88..66..11 CONNECT request.. 123
88..66..22 DISCONNECT request ... 124
88..66..33 DROP request.. 124
88..66..44 GET request... 124
88..66..55 HELP request .. 124
88..66..66 LIST request .. 125
88..66..77 START request.. 125
88..66..88 STOP request... 125

8.7. Sekar Messages... 125

1. Introduction 1 of 131

Chapter 1 Introduction

This topic introduces you to the concept of automatic events management and
how zJOS/Sekar® do it for you. Before going further, probably want to know
what event management system (EMS) is and why we need it. For instance, for
you who manage in day-to-day z/OS operation, thousands messages may occur
in your system consoles. Some of them probably do not very important. But,
there some critical messages which need you to do certain actions, such as
replying to the message (for WTOR message), issuing certain commands,
allocating or deleting certain datasets or whatever. For example, when a certain
job is ABENDing that causing SVC dump while no more enough space in all
assigned disk volumes, then message IEA793A occurs asking you to either abort
the dump (reply D) or prepare enough disk space.

Without EMS support, your staff has to do it manually. Such task is not too hard
to do. Just stick his/her eyes to the console screen and soonest IEA793A occurs,
do all those necessary actions. The problem is, message IEA793A is not the
only thing to do. There are some other similar mechanisms. Moreover, their
occurrences are totally unsolicited, can not be predicted. No guarantee when
the message IEA793A is coming, tonight? Tomorrow? Next week? Or even
next year? Some very frequent, whereas some others rare. Hence, difficult for
your staffs to familiar what they have to do, especially for the rare one. Although
special/local manual is provided, they need awhile to select which page to read,
need time to read it and need time to play with console and/or terminal keyboard,
even though no guarantee all are done correctly. Meanwhile, total consumed
time sometime is intolerable delay.

Smart systems programmer can help such situation by customizing console exit
routines such as IEAVMXIT. Nevertheless, such solution is not very flexible and
high skilled people to maintain. As most of z/OS exit routines are written in
assembly, they need to be customized and maintained by only person who has
assembly programming skill and deeply understand z/OS architecture. Not easy
to find them. Moreover, most of exits need IPL to make them effective. It means,
you have to schedule IPL every time the exit(s) are updated.

Exit routines can read system TOD, so, smarter systems programmer can make
them to work differently in certain year, month, date, clock time and/or week day
according to the need. The need, however, sometime also require the different
actions in the holiday. In such case, a national calendar management has to be
added in the exit routines. This will be a very serious constraint and only very
expert people can do it efficiently.

In fact, not only messages need to be responded. Sometime commands or status
of jobs execution also need to be responded. Some environments even require

2 of 131 1. Introduction

executing sets of commands periodically. Job execution status (such as job
termination and job step termination) probably can be handled using JES or SMF
exit routines. Exit routines, however, are not applicable for commands and timer,
except for JES commands. No sample is provided, so nothing to customize.
They need deeper way to handle which need user program to manage the timer
and/or intercept command processing. If all are done by exit routines and user
programs, your system will become a ranch of system-level user’s modules. You
are facing big problem in the future.

In the other hand, if all have to be done manually, e.g. you don’t have the expert,
you can imagine how they work. These are not just a matter of time consuming
which result quite significant delay in total. These are also potential risks which
may come from human error.

Occurrences of messages, command issuances, status of jobs termination or job
step termination and time up of certain TOD are in common called as system
events or just event for short. All the above cases are regarding how to manage
events systematically and efficiently. That means, you need a technology which
able to do it, called events management system (EMS).

With EMS, the above cases are very simple to handle. You don’t need to write
even any single exit routine nor user program. You don’t even need systems
programming expert to manage them. All you need is just register text or part of
text of messages, commands, name of jobs or job with steps you are going to
respond, and sets of actions (in text also) accordingly. EMS will work for you as
what you expect, even more.

There are some EMS products in the IT market you can consider. Their capability
in detail probably varies. Their basic concept of work, however, should be the
same, capture specified events and fire specified associated actions. The way to
specify or register event/action(s) pairs could be varies. Some products use a
scripting, some use tabulation and the others offer both ways. Scripting is more
flexible. You can put your logic for specific relationship between event and its
associated set of actions. But, you need a specific skill to write script. Although
much simpler than assembler coding for exit routines, scripting is a programming.
You need another investment to have the skill.

Tabulation is simpler and easier to work with. You don’t need to write script. All
you need is just fill up a form in the panel to register each pair of event and its set
of actions into EMS database. But, it is less flexible and not applicable for
complicated conditional actions.

The moderate one is the product that support both ways. For simple cases, you
can use tabulation. For complex cases, you are challenged to write script.

1. Introduction 3 of 131

1.1. Event

Operating system provides formatted interruption called “event”. Although not all
events reflect hardware interruption, the ways they occur, however, like hardware
interruption. Some events are used internally by operating system to do some
advance processing. For example, when a task is terminating, “end-of-task”
event occurs to notify task manager to do necessary recovery or housekeeping.
Other example is I/O processing. All data movement between CPU memory and
external devices, including memory of other computer by means of data
communication, are named as I/O, which is actually handled at primitive layer of
operating system based on hardware interruption. However, at advance layer,
each type of device need specific handling. Data from or to a disk needs to be
handled as storage data or file by file manager. Data from, or to other computer
needs to be handled as network data by network manager. Even each type of
network needs separate network manager. Network data from or to SNA
network needs SNA control point program, whereas data from or to IP network
needs TCP/IP stack program. Primitive layer (by means first level interrupt
handler or FLIH), catches interruption and does some control mechanism, then
schedule I/O subsystem (IOS) for further handling. IOS then categorize to which
manager data need to be processed. To notify selected manager, IOS uses
“soft interruption” called event.

Both examples above describe events that used by OS components to trigger
other OS components. Their exchange mechanisms are varies and mostly are
not general programming interface (GPI). This means, there is no guarantee for
their consistencies and compatibilities from release to subsequent release of OS.
User program should not touch with non-GPI stuffs.

OS also provide GPI for some certain events exchanges for user programming.
For example, in I/O and network programming, the way user program knows that
its write(), send(), read() or recv() request has completed is because notified by
I/O or network manager. Sometime you don’t feel there is an event exchange
between your program and the system. Your codes just issue send() as a part of
synchronous process. This is an illusion of a magic trick. Event exchange is
hidden behind the send() function. When your program got execution control at
send() function, your program is actually held in wait state after the detail request
is received by the system. System then schedules your request for processing
then switch execution control to task in the dispatching cyclic. Your program’s
task is always skipped until your request is completely done. Upon completion
of request processing, system then wake your program up. Such mechanism is
caller blocking-I/O algorithm.

You may also involve in managing event exchange. In such case, your program
is not held to wait for send() request completion. Execution control return to your
program immediately after the detail request was received by the system and

4 of 131 1. Introduction

subsequent instruction of your program got control. Such mechanism is called
non-blocking-I/O algorithm. No more synchronous illusion. But, you must really
understand that when control is returned after send(), the I/O is not done yet, so,
subsequent instruction should not deal the result of this send() function. You are
responsible to find out whether your send() request is completed by listening its
associated event.

Events exchange that included in GPI stuff usually well documented in user’s
guide and reference manuals. The exchange uses a standard format and rule.
Event information is encoded into 4-byte word aligned area called event control
block (ECB). Source of event could be the system or user program, where the
target in most cases is user program. OS provides a standard rule for source to
post a signal and for target to listen the event of incoming signal. Hence, for user
program to user program exchange, event can be anything.

Regardless the GPI category and the target of event sourced from the system,
sometime standard processing is not enough for certain implementation. For
example, when a job (user program) ends, standard action of the system is just
sending a message to console telling that the job is ended. Whereas, in certain
user’s site, when a job ABC ends, user needs to run job PQR and transfer all
resulted spool files to a Windows system at a certain IP address. Such action is
very specific and not implemented in the OS. To have it done, user must do it
manually every time message IEF404I or $HASP395 regarding job ABC ended is
occurred on the console. As both messages are scrolled out from console too
fast, user need to watch them from SDSF. Worse, isn’t it?

In heavy production sites, operators have to do tens or even hundreds of specific
or even critical actions in respond of certain events. To avoid human error, user
needs event management system, which is normally not included as a standard
component of OS.

1.2. Events Management System

Events management system (EMS) is a software product that was designed to
give a chance to user to manage any event types and their associated actions
easily without touching internal OS nor programming effort. Users shouldn’t care
whether the events they manage are GPI or non-GPI. Users don’t need to know
which rule of the game is used internally by EMS, whether it is standard ECB rule
or not. EMS product vendors should fully responsible to guarantee their products
compatibility to their users’ system environment. All users have to do is just fill
up the table or write simple script.

Technically, EMS is a set of programs under a single coordination to manage
each pair of event and associated actions stored in its database. It consists of at

1. Introduction 5 of 131

least 4 basic major components: automation database manager, event listener,
action manager and user interface. .

Automation database manager is a set of services to manage accesses to the
database that contain events and actions definition. Its style, type of processing
and algorithm are varies, depend on the taste and skill of its designer. It is tightly
connected with all other 3 basic major components.

Database manager can either run as system- or user-level program, depends on
its design. If it use OS standard database establishment, it can run in problem
state as a user-level program. Privileged portion is hidden behind the OS. But,
some products probably prefer to use their own establishment technique. Hence,
consequently, it must run in supervisor state to authorize several controls of I/O
and memory.

Event listener is a set of services to capture events exactly at the time of their
occurrences. Its capabilities in capturing various types of events and algorithm
used are varies, depend on the skill of its designer and developers. Targeted
events mostly are system events, such as messages, commands, job termination
and job step termination. It calls automation database manager to select which
events table got to be used as a reference during listening events traffic.
Captured events are then routed to action manager for firing.

Event listener is the most critical component. As the targets are system events, it
must run in supervisor state all the time. Events traffics are dispersed around
several locations in the system depend on their types. Whereas, most of them
doesn’t follow standard ECB rule, rather, each type uses its own protocol. Some
types use subsystem interface (SSI), some other types use JES or SMF. Hence,
to capture them, listener must adapt their ways and stay on their residences.

Action manager is a set of services to collect captured events received from
event listener and manage their executions based on action tables provided by
automation database manager. Selection of each actions-set for each captured
event is done by automation database manager. Action manager responsibilities
are only managing their firing processes which normally done simultaneously in
multitasking algorithm.

Action manager is second critical component. As it deals with system command
processors, it must runs in supervisor state. As the way events captured by the
listener are asynchronously, action manager must also work simultaneously to
get the shortest path for each event processing. So that is why, in most of EMS
products, action manager uses multitasking algorithm.

User interface is a set of services to allow EMS administrators interact with each
major component of EMS. With this interface, EMS admin can manage events
and actions tables using automation database manager. With this interface,

6 of 131 1. Introduction

EMS admin can control either event listener or action manager. Its art, style,
ergonomic level, type of processing and algorithm are varies, depend on the
taste and skill of its designer and developers. .

User interface is not very critical and in most cases it doesn’t need to run in
supervisor state unless database manager uses its own establishment method.
Nevertheless, it must be able to enter to supervisor state, in case it needs to
interact directly with either listener or action manager.

User interface that runs on TSO/ISPF needs special treatment when switched to
supervisor state as ISPF doesn’t authorize. Otherwise, it must provide its own
panel and screen management.

1.3. EMS with Sekar

Sekar or zJOS/Sekar is a program to help you to manage your specific events
and associated actions mechanism automatically, commonly called as event
management system (EMS). Each event can be associated with one or more
actions. Figure 1.1 below illustrates how event is associated with actions in
Sekar EMS table structure. Every time event 2 occurs, Sekar event listener then
instantly schedule action 2.1, action 2.2 and action 2.3 for execution.

Figure 1.1: Structure of Sekar EMS table

1. Introduction 7 of 131

At current level, Sekar supports 5 types of event, i.e.:
• Message (MSG) for both WTO and WTOR
• Console command (CMD)
• Time of day (TOD)
• End-of-jobstep (EOS)
• End-of-job (EOJ) for either job run on initiator or started job (EOM)

Part of Sekar, which is event listener, runs as subsystem on z/OS kernel. As
illustrated in figure 1.2, event is caught by event listener, then posted to event
executor. Then, when event executor is dispatched by z/OS task manager,
event information is used to retrieve associated actions in action table. Matched
actions are then executed serially.

Figure 1.2: Event handling logic flow

At current level, Sekar only supports 3 types of action, i.e.:
• Issue command
• Issue reply to message for WTOR only
• Start a rule. .

Command and rule actions are applicable for all of event types. Reply action to
message only applicable for WTOR message event.

Before actions are performed, Sekar evaluates timeframe if one was defined.
Timeframe is time based filtering, which consist of variable of start date and time,
end date and time, and national holiday. Each variable is optional. If event is
occurred within timeframe, it is considered as valid event, then, actions are

8 of 131 1. Introduction

performed. Otherwise, actions are ignored. If timeframe was not defined, no
timeframe checking is made. Matched event is always valid anytime.

Optionally for message event (for both WTO and WTOR), you can either
suppress its appearance in console, syslog or both prior to actions execution.

2. Getting Started 9 of 131

Chapter 2 Getting Started

zJOS/Sekar® is an EMS solution product which is bundled together with
zJOS/Puspa® (automatic workload scheduler) and XDI/AutoXfer® (report/spool
distribution) in a single package called zJOS-XDI. All are running in a single
MVS address space, named XDI, which is zJOS-XDI main address space.

Regardless AutoXfer is used in your environment, XDI main address space is
always accompanied by XDILGR address space, which actually is AutoXfer
logger.

2.1. Preparing zJOS-XDI System

Sekar, although most of its processes are run as subsystem functions embedded
within z/OS system area, is booted and controlled from ordinary system-task that
runs on an address space together with other zJOS-XDI products. This address
space is called zJOS-XDI main address space. So therefore, to have Sekar runs
properly, zJOS-XDI main address space must up properly. As a common service
provider for all bundled products, zJOS process manager in certain circumstance
needs specific additional services which need to be executed outside the main
address space for performance reason. Hence to ensure the process manager,
which is a part of Sekar, runs properly, main and all associated address spaces
must be properly prepared. Preparing address spaces means preparing their
JCL procedures and all associated stuffs.

Unless you need very specific changes, the main and all its associated zJOS-XDI
address spaces have actually been completely prepared by INSTALLX exec
during products installation steps. Once INSTALLX done, you would find all
zJOS-XDI datasets and JCL procedures are ready in your system.

22..11..11 zJOS-XDI Datasets

Main materials of zJOS-XDI package are 2 sets of datasets, zJOS-XDI system
datasets and application datasets. Both sets are prepared by INSTALLX exec
during installation steps.

10 of 131 2. Getting Started

zJOS-XDI System Datasets

System dataset is a datasets that contains zJOS-XDI system materials. zJOS-
XDI installation generates some systems datasets such as module libraies, ISPF
stuffs libraries, Rexx and Clist exec libraries and samples of parameters and
other stuffs libraries etc. By default, all system dataset names follow naming
standard as below:

hlq.ZJOSvrm.libname

Where

• hlq is high level qualifier as specified during installation steps
• vrm is version, release and modification level. For example, 219

means version 2, release 1 and modification level 9.
• libname is a name that represents the content or functions

contained in the dataset.

For example, if your zJOS-XDI is 210 and have chosen prefix SYS5, your Clist
exec library name will be SYS5.ZJOS219.CLIST. Below is a list of library names
of zJOS-XDI system datasets: To describe them easier, the names mentioned
below are shorten to the last qualifier.

• CUSTMAC is an assembler macro library that contains macros for use as
references when source codes in CUSTLIB are assembled.

• LINKLIB is a load library that contains non-LPA modules. These also in
binary format. Some modules are non-executables (just for loaded only).
Non-LPA doesn’t mean non-reentrant. Most of executable modules of
zJOS-XDI are reentrant. This library must be accessed in STEPLIB
concatenation of all zJOS-XDI address spaces and TSO logon procedure
for each userid that’s assigned to work with zJOS control panel. Unless
CUSTMOD is also concatenated, LINKLIB must be on top.

• LPALIB is a load library that contains LPA modules. All are in binary
format and reentrant regardless executable or not. All LPALIB modules
are designed to be loaded onto link pack area (LPA) unless you choose
standard installation to let zJOS-XDI process manager itself to load its
modules onto LPA dynamically. This library must be accessed in
STEPLIB concatenation of all zJOS-XDI address spaces and TSO logon
procedure for userid who needs to access zJOS control panel, following
LINKLIB, unless zJOS-XDI is installed in LPA permanently.

• DYNLPA is a load library that contains LPA modules. All are in binary
format and reentrant regardless executable or not. All DYNLPA modules
must be loaded onto LPA. When you choose standard installation, zJOS-
XDI process manager will load all DYNLPA modules dynamically onto
LPA at the first start within IPL period. Subsequent start will ignore them
unless you specify OPT=NEW on start command. Unless zJOS-XDI is
installed in LPA permanently, DYNLPA must be accessed together with

2. Getting Started 11 of 131

LPALIB as an input file in zJOS-XDI main address space with DD name
as specified in ZDD keyword.

• CLIST is a text library that contains Clist and Rexx programs for use as
procedures to prepare and support zJOS-XDI control panel. This library
must be accessed as SYSPROC file in TSO logon procedure for userid
that’s assigned to work with zJOS control panel.

• TABLES is an ISPF table library that contains several ISPF tables used
by zJOS-XDI control panels. This library must be accessed as ISPTLIB
file in TSO logon procedure for userid that’s assigned to work with zJOS
control panel.

• PANELS is an ISPF panel library that contains panel definitions for zJOS-
XDI control panels. This library will be dynamically accessed by TSO
users when zJOS control panel is in session.

• MESSAGES is an ISPF message library that contains message form
definitions for zJOS-XDI control panel. This library will be dynamically
accessed by TSO users when zJOS control panel is in session.

• XMILIB is a data library contains all installation materials of zJOS-XDI in
TSO XMIT format. This library has to be kept for use by INSTALLX exec
to maintain update track.

zJOS-XDI Application Datasets

Application dataset is a dataset that contains zJOS-XDI user materials. zJOS-
XDI installation generates some application datasets such as databases, logs,
user module library, user’s Rexx and Clist exec libraries, parameters library.
Some could be inherited from package given samples, whereas some others are
developed by users from scratch. Names of application data should follow user’s
naming standard. However, application datasets those are inherited from given
samples, originally use zJOS-XDI naming format. But you are recommended to
change them to follow your own standard instead. This to avoid unexpected
replacement when you apply patches wrongly.

Application datasets which are developed by users from scratch are automation
database and spool distribution logs.

• Automation database is a relational database into which all scheduler
and EMS tables reside. Although the moment, this DB is only used for
scheduler (Puspa) tables, format and structure for EMS tables are already
prepared. This DB is supported by DIV technology to keep all tables
floated on memory all the time for performance reason. Hence physically
it must be allocated as a VSAM linear dataset (LDS). This VSAM must be
accessed by zJOS-XDI main address space as DIVDATA file

• Spool distribution logs are logs for use by spool distribution, by means
AutoXfer. These logs are supported by DIV technology to keep them
floated on memory all the time for performance reason. Hence physically

12 of 131 2. Getting Started

it must be allocated as a VSAM linear dataset (LDS). This VSAM must be
accessed by XDILGR address space as DIVDATA file

Application datasets which are inherited from package given samples are custom
jobs, custom module, parameters, scheduled jobs, rules and rexx exec libraries.
To describe them easier, names mentioned below are the last qualifier of their
original given names.

• CUSTLIB is a text library that contains custom data source in text format,
such as userid table, DIV capacity and all other definition source codes
generated during installation steps. You also have chances to customize
or make some changes to these codes. Binary load modules resulted
from these source codes are stored into CUSTMOD.

• CUSTMOD is a load library that contains custom data modules in binary
format, such as userid table, DIV capacity and all other binary object
modules built during installation steps. This library must be accessed on
top of STEPLIB concatenation of zJOS-XDI main address space and TSO
logon procedure for userid who needs to access zJOS control panel.

• PARMLIB is a data library that contains samples parameters for all zJOS-
XDI products. You can use them just to prove the functions only. You
are responsible to customize them or add new parameters to meet your
production requirements. This library must be accessed in all zJOS-XDI
address spaces as PARMLIB file (DD name).

• RULELIB is a text library that contains samples of automation rules. Rule
is a rexx exec program. You can use them just to prove the functions
only. You are responsible to customize them or add new rules to meet
your production requirements. This library must be accessed in XDIRULE
address space as SYSEXEC file.

• SAMPJOBS is a text library that contains samples of jobs JCLs meet with
sample of schedule table XDISCD00 member in PARMLIB. These jobs
are just to prove scheduler (Puspa) functions only. Nevertheless, you
need to make some corrections to meet your system environment before
use them. This library must be accessed in zJOS-XDI main address
space as JCLLIB file.

• REXXLIB is a Rexx exec library contains samples of Sekar Rexx function
applications that can be use in either foreground or background job. To
execute them, this library must be accessed in SYSEXEC file, where
LINKLIB and LPALIB must also be accessed in STEPLIB file.

• PROCLIB is a text library contains JCL procedures for all zJOS address
spaces. INSTALLX exec customizes and copies all these procedures into
current system procedure library. You, however, could include this library
into system procedure library in current MSTJCLnn instead.

2. Getting Started 13 of 131

22..11..22 zJOS-XDI JCL Procedures

Start Sekar means bring zJOS-XDI up. This means start zJOS-XDI address
spaces and activate zJOS subsystem functions. If it is at the first time since IPL,
zJOS subsystem initialization is done first prior to activate its functions and once
only. zJOS subsystem remains floated on z/OS system area regardless address
spaces are brought down.

Before you start zJOS-XDI, make sure all associated procedure JCLs resulted
during installation steps correct. INSTALLX exec stores all procedures in your
current system procedure library (e.g. SYS1.PROCLIB). There are 5 procedures
you should verify; XDI, XDILGR, XDIAXFR, XDIRULE and XDISCD.

XDI – Main procedure

Main procedure means a procedure to start zJOS-XDI main address space. Its
given name is XDI. This because in the first design, address space was only for
XDI part (e.g. AutoXfer). zJOS part (e.g. Sekar and Puspa) came later and most
of them initially run in subsystem level. Although finally zJOS part was enhanced
(since 2.1.3) with newly added 3 components, database manager, user interface
and network server (for integration) which require to run on the main address
space, its inherited procedure name, XDI, is still maintained to avoid confusion. .

The XDI member is fully commented, where more than 80% are remarked lines,
so please read carefully. It actually consists of 12 JCL cards as shown below:

//XDI PROC START=00,V=2,LVL=19,
// HLQ=NIT,SSN=ZJOS,OPT=,ZDD=ZJOSLIB
//DEREXEC EXEC PGM=DERJOS,REGION=0M,
// DYNAMNBR=99,TIME=1440,
// PARM='FILE=&START,SSN=&SSN,OPT=&OPT,ZDD=&ZDD '
//STEPLIB DD DISP=SHR,DSN=&HLQ..ZJOS&V&LVL..CUSTMOD
// DD DISP=SHR,DSN=&HLQ..ZJOS&V&LVL..LINKLIB
// DD DISP=SHR,DSN=&HLQ..ZJOS&V&LVL..LPALIB
//ZJOSLIB DD DISP=SHR,DSN=&HLQ..ZJOS&V&LVL..DYNLPA
// DD DISP=SHR,DSN=&HLQ..ZJOS&V&LVL..LPALIB
//PARMLIB DD DISP=SHR,DSN=&HLQ..ZJOS&V&LVL..PARMLIB
//CMDLIB DD DISP=SHR,DSN=&HLQ..ZJOS&V&LVL..PARMLIB
//JCLLIB DD DISP=SHR,DSN=&HLQ..ZJOS&V&LVL..SAMPJOB S
//DIVDATA DD DISP=SHR,DSN=ZJOS.PUSPA.LDS

PROC card consists of 6 argument keywords and labeled as XDI. You can
change the label, but, you must also change the member name accordingly.
Keyword V, LVL and HLQ are just for JCL substitution. You can change them as
necessary, or eliminate them, although leave them as they are much better.

14 of 131 2. Getting Started

Keyword START, SSN, OPT and ZDD are mandatory, since their values are
passed to zJOS-XDI programs. These keywords will be discussed in par 2.2.

START=xx specifies member of XDISYSxx to be used as default main zJOS
system parameter. Suffix xx can be any 2 digits valid member name. Take a
look the content of this member. Most of content of XDISYSxx are used by
AutoXfer, since it is first zJOS product. You can change value of xx to be set as
default value, but associated valid XDISYSxx member must be exist. If you only
run Sekar, the only important things in XDISYSxx member are CMDTAB=cc and
KEY=AUTO:aaaaaa-aaaaaa-aaaaaa. Value cc for CMDTAB keyword specifies
XDIEMScc member to be used as a source of EMS table for Sekar. Given value
from installation package is 00. You can modify cc in XDISYSxx member directly
or using XDI panel, but you must prepare associated XDIEMScc member in XDI
parameter library. To prepare XDIEMScc member, however, you must not edit it
directly. This member contains some sensitive binary values which can not be
edited manually unless you have already very familiar with zJOS-XDI internal
architecture, so you can use ISPF editor with HEX mode ON. Though, you are
still not recommended to do this way.

KEY=AUTO:aaaaaa-aaaaaa-aaaaaa specifies license key of zJOS/Sekar®. If
the key is valid, Sekar will work unlimited for you until the key is expired. You will
be reminded since 30 days before expiration. For non-permanent license, you
should ask new key to your zJOS support before your key is really expired.

Next card is EXEC card. It specifies that storage and time are unlimited. You
should not change anything in EXEC card. Just leave it as it is.

The rest are 6 DD cards, STEPLIB, ZJOSLIB, PARMLIB, CMDLIB, JCLLIB and
DIVDATA. Although not all DDs used by Sekar, they must exist to avoid JCL
error, and must be specified in procedure JCL to avoid program logical error, as
this procedure is for an STC that run all zJOS-XDI products, not just Sekar alone.

STEPLIB DD must point to 3 load libraries, CUSTMOD, LINKLIB and LPALIB if
zJOS standard installation is chosen. If zJOS is installed permanently in LPA,
STEPLIB DD must only point to CUSTMOD and LINKLIB.

ZJOSLIB DD name actually can be any valid DD name matches with specified
value in ZDD parameter keyword. ZJOSLIB must point to 2 zJOS-XDI load
libraries, DYNLPA and LPALIB. DYNLPA library contains critical programs only
modules that must be loaded onto LPA. If you choose to let zJOS-XDI to load
itself onto LPA dynamically, it loads the whole DYNLPA and some modules from
LPALIB onto Dynamic LPA via ZJOSLIB DD. That is why LPALIB must also be
concatenated in STEPLIB to make the rest accessible. Don’t worry about the
search order. Although LPALIB is addressed in STEPLIB, some modules which
are already in LPA will be search first by zJOS process manager.

2. Getting Started 15 of 131

If you choose to install zJOS-XDI onto LPA permanently, by means PLPA, MLPA
or FLPA, however, you must remove DYNLPA and LPALIB from this procedure
JCL and consequently you must put both libraries in LPALSTnn, IEALPAnn or
IEAFIXnn member of system parameter library to let system load them during
nucleus initialization progress (NIP). .STEPLIB concatenation only consists of
CUSTMOD and LINKLIB. ZDD parameter keyword must be set to either blank or
STEPLIB. STEPLIB is the internal default, so when you specify blank, it will be
changed to STEPLIB internally.

PARMLIB and CMDLIB DDs must address the same dataset, PARMLIB library.
CMDLIB is actually inherited from earliest XDI/AutoXfer and it no longer use
since version 2.1.2. It just to keep compatibility of long range AutoXfer releases.

JCLLIB DD is a library or concatenated libraries of scheduled jobs JCL which is
used by Puspa only for automatic workloads scheduling. Initially it points to given
SAMPJOBS library. Sekar doesn’t use these libraries. Although you do not use
Puspa in your environment, however, at least one dummy library must be
specified to avoid JCL error problem.

DIVDATA DD must point to VSAM linear dataset (LDS) to hold most of zJOS-XDI
databases. These databases are structured as multiple linked-list for relational
access. Access method uses zJOS protocol based on DIV technology.

XDILGR – Procedure to start AutoXfer Logger

Although Sekar doesn’t depend on AutoXfer and its Logger, main address space
always starts XDILGR automatically at initialization. If XDILGR is improper, error
message will be appeared. You actually can ignore it if you don’t use AutoXfer.
However, if you don’t like error message, you have to prepare a valid XDILGR
procedure. Once it up, you can bring it down normally

The XDILGR member is fully commented, so please read carefully. The member
is actually consists of 5 JCL cards as shown below:

//XDILGR PROC START=00,V=2,LVL=12,HLQ=NIT
//LOGGER EXEC PGM=DERLGR,REGION=0M,DYNAMNBR=99,
// TIME=1440,PARM='FILE=&START'
//STEPLIB DD DISP=SHR,DSN=&HLQ..ZJOS&V&LVL..LINKLIB
// DD DISP=SHR,DSN=&HLQ..ZJOS&V&LVL..LPALIB
//PARMLIB DD DISP=SHR,DSN=&HLQ..ZJOS&V&LVL..PARMLIB
//DIVDATA DD DISP=SHR,DSN=NIT.ZJOSXLGR.LDS

If AutoXfer is not being used, nothing is important except to just make sure that
XDILGR procedure is a correct procedure. All you need are; make sure all
symbol variables are correct, all datasets pointed by each DD card exist, and
especially for dataset name specified on DIVDATA DD card must be VSAM LDS.

16 of 131 2. Getting Started

If AutoXfer is being used in your environment, it very important that you must
understand very well XDILGR procedure. If so, please read AutoXfer user guide.

XDIAXFR – Procedure to start AutoXfer externally

AutoXfer by default is a subtask that runs within zJOS-XDI main address space.
As it somehow deal too much I/O, AutoXfer can potentially degrade the whole
address space which directly affect Sekar and Puspa performance as well. To
avoid such situation, an option is given to run AutoXfer externally in a separate
address space.

XDIAXFR is a procedure used by zJOS process manager to do it. You must
neither change its name nor start it from outside zJOS-XDI control panel. This
consists of 5 JCL cards as shown below:

//XDIAXFR PROC V=2,LVL=19,HLQ=NIT
//AUTOXFER EXEC PGM=DERAXF,REGION=0M,
// DYNAMNBR=99,TIME=1440
//STEPLIB DD DISP=SHR,DSN=&HLQ..ZJOS&V&LVL..LINKLIB
// DD DISP=SHR,DSN=&HLQ..ZJOS&V&LVL..LPALIB
//PARMLIB DD DISP=SHR,DSN=&HLQ..ZJOS&V&LVL..PARMLIB

All argument keywords are subset of main procedure argument, so you can refer
to main procedure to learn the detail.

If AutoXfer is not being used, XDIAXFR actually never be used. However, in case
you want to do some trials, verify this procedure is a nice to have.

XDIRULE – Procedure to start an automation rule

XDIRULE is actually a procedure to start TSO background job to run automation
rule and executed in conjunction to rule action. Normally rule is a Rexx exec
program. However, you can use any program that run on TSO as a command.

XDIRULE procedure consists of 8 JCL cards as shown below:

//XDIRULE PROC M=,ARG=,V=2,LVL=19,HLQ=NIT
//XDITSO EXEC PGM=IKJEFT01,
// DYNAMNBR=20,REGION=0M,PARM='%&M &ARG'
//STEPLIB DD DISP=SHR,DSN=&HLQ..ZJOS&V&LVL..LINKLIB
// DD DISP=SHR,DSN=&HLQ..ZJOS&V&LVL..LPALIB
//SYSEXEC DD DISP=SHR,DSN=&HLQ..ZJOS&V&LVL..RULELIB
//SYSTSIN DD DUMMY
//SYSTSPRT DD SYSOUT=A
//SYSPRINT DD SYSOUT=A

2. Getting Started 17 of 131

Most of argument keywords are common, for JCL substitution. The only different
are keyword M and ARG. Both will be filled up by Sekar when an automation
rule is executed. M will receive rule name, which is a member name of RULELIB.

ARG will receive arguments for the rule. ARG is the most important thing that is
used by Sekar to pass associated event information to your rule program. It will
be discussed further in chapter 5, especially par 5.2 and 5.3.

Most of JCL cards are standard I/O table for TSO background execution with
RULELIB accessed as SYSEXEC file. As RULELIB is an application dataset,
you may change it to your own instead. STEPLIB DD must address zJOS-XDI
LINKLIB and LPALIB for standard installation. If permanent LPA is chosen, you
must remove LPALIB. If you use your non-rexx program as a rule, your library
must be concatenated on top of STEPLIB.

XDISCD – Procedure to submit a job

The way Puspa schedules each job is directly unload the job JCLs into internal
card reader through SSI connection to JES2. In the most cases, connection to
JES2 always granted. However, in case somehow the connection is not granted,
the alternate way is provided. Puspa will automatically start XDISCD to submit a
job.

As it is started internally, the name of XDISCD must not be changed. XDISCD is
actually not a zJOS-XDI program. It rather is IEBEDIT utility to copy a member in
a PDS into JES2 INTRDR spool. The source PDS will be substituted to a library
name that is on top of JCLLIB DD concatenation in zJOS-XDI main procedure.

XDISCD procedure consists of 7 JCL cards and no zJOS-XDI system dataset
involve as shown below:

//XDISCD PROC JOB=,LIB=
//SCHED EXEC PGM=IEBEDIT
//SYSPRINT DD SYSOUT=(A)
//SYSUT1 DD DDNAME=XDILIB
//SYSUT2 DD SYSOUT=(A,INTRDR),DCB=BLKSIZE=80
//SYSIN DD DUMMY
//XDILIB DD DISP=SHR,DSN=&LIB.(&JOB)

In PROC card, there are 3 keyword arguments, JOB and LIB. Nothing to bother,
both arguments will be filed up by Puspa without your involvement.

As it is just an ordinary IEBEDIT utility, you can actually use it for your own work
regardless any zJOS-XDI product is active. Nevertheless, copy it with different
name is strongly recommended.

18 of 131 2. Getting Started

XDA – Procedure to start zJOS Agent for z/OS

zJOS-XDI is designed as an integrated automation and scheduling solution. This
means, if you have multiple hosts or servers, you have chances to automate
them integrally using zJOS-XDI. To do this, you only need one host or server run
full zJOS-XDI system and the rest just run zJOS Agent each. At the moment,
only Agent for z/OS platform is provided.

See chapter 5 especially sub par 5.2.2 to learn further about XDA procedure JCL
and zJOS Agent .

2.2. Starting and Stopping zJOS

XDI (zJOS main address space) is an address space used by zJOS to initialize
zJOS subsystem and to place all zJOS subtasks. Hence, starting zJOS address
space at initial time performs both, initializing zJOS subsystem and attaching all
zJOS major subtasks. Starting zJOS address space at subsequent time will
perform attaching all zJOS major subtasks only. zJOS subsystem needs to be
initialized once only in each IPL period.

zJOS major subtasks are categorize into 5 zJOS-XDI major components, Sekar,
Puspa, AutoXfer, command processor and Socket server. Except for Sekar and
command processor, all other major subtasks up only when each associated
component is activated.

Sekar functions are supported by 8 major subtasks plus zJOS subsystem, which
always up regardless Sekar is active. Once they up, they remain up along with
zJOS address space. In each major subtask, ESTAE type recovery routine is
provided to keep it remains up in all situations. This means, in case an exception
condition is encountered, recovery routine will take action to avoid the task ended
abnormally. Actually such mechanism is applicable for all zJOS major and minor
subtasks.

During performing the works, each major subtask may generate several minor
subtasks depend on its workload. This is to avoid workloads from being queued
in ECB level. Most of minor subtask is non-loop task, which is up when attached
by its major subtask, performs the works and then terminate upon completion of
its works.

Since all zJOS major and minor subtasks and subsystem represent all zJOS-XDI
products, including Sekar, to bring Sekar up, zJOS address space must be
brought up first. Use START command to bring zJOS up with the following
syntax:

2. Getting Started 19 of 131

SUB=MSTR argument specifies that zJOS must run under z/OS MVS master
scheduler. This parameter is required. You must specify this argument explicitly,
exactly as it is. Otherwise, it will result unpredictable situation.

START= is an optional argument, to select zJOS-XDI system parameter, by
means XDISYSxx member of zJOS parameter library, to be use to initialize zJOS
main address space. An ‘xx’ value in START=xx argument reflects 2-digit suffix
of XDISYSxx member. Supplied member in zJOS-XDI installation package is
XDISYS00, which is the default when you ignore this argument.

SSN= is an optional argument, to specify subsystem name for zJOS-XDI. The
default name is ZJOS. Use this keyword if you prefer different name. Valid
subsystem name must be 1 to 4 alphameric. zJOS-XDI requires to run as z/OS
MVS subsystem.

OPT= is an optional argument, to specify whether zJOS-XDI is to refresh all its
parameters from parameter library (COLD) or to refresh all its LPA modules in
dynamic link pack area (NEW). If NEW is selected, COLD is also in effect.
NEW option is recommended only when you have applied patches or updates to
your zJOS-XDI which change several core modules. If you avoid this OPT=
argument, warm start is selected, which means zJOS reuses all of its in-storage
parameters. Since no I/O is in effect, zJOS initialization will be done much faster.
This is the best way to bring zJOS up in the normal situation. You need COLD

20 of 131 2. Getting Started

start option only when you have made changes zJOS parameters and you want it
to take effect. Refreshing parameters can also be done on the fly.

ZDD= is an argument to inform zJOS process manager the DD name in which
zJOS LPA modules reside. Specified DD name must address the concatenation
of 2 zJOS system datasets, DYNLPA and LPALIB and applicable only if zJOS-
XDI is installed outside LPA (standard). If both libraries are in permanent LPA,
ZDD must be avoided or specified as ZDD=STEPLIB.

Regardless you license, Sekar will automatically be brought up when zJOS
address space initialization complete. If you don’t license Sekar, EMS will still
active on your zJOS address space, however, it only works 30 times a day.
When 30 works has been reached, Sekar ignores all subsequent work until
0:00:00 o’clock.

Once zJOS address space is up, all zJOS subsystem commands then available
for you. All zJOS subsystem commands must be prefixed with dot (“.”) or verb
of “XDI” followed with a blank space. For example, to display operation status,
issue

.STATUS

or

XDI STATUS

Then status information appears on console screen or syslog as shown in figure
2.1 below.

Figure 2.1: Appearance of zJOS status information

If dot (“.”) is already used by other subsystem in your environment, you should
not use dot for zJOS. This will cause inter-subsystem conflict. In such case,
please inform your XDI representative

2. Getting Started 21 of 131

You can also invoke zJOS command via MODIFY command to zJOS address
space. Such way will not involve zJOS subsystem. For example, to display
zJOS status, issue

F XDI,STATUS

It results the same effect as when you use zJOS subsystem command. Other
non-subsystem way is invoking zJOS command from zJOS console interface
panel in TSO. To obtain complete status information as shown in figure 2.2,
just press enter on zJOS primary panel.

To stop zJOS address space, issue ‘SHUTDOWN’ command to zJOS-XDI. To do
this, you can either use ZJOS subsystem command;

.SHUTDOWN

Or MODIFY command:

F XDI,SHUTDOWN

When shutdown process is complete, all major and minor subtasks are down,
and zJOS address space memory is end. Although, all in-storage parameters
are kept and zJOS subsystem remains active held unless an exception condition
was encountered during address space was up. Nothing is done by zJOS-XDI
during active held state. To bring zJOS address space back up, simply issue;

.START

2.3. Preparing Sekar

By default, Sekar parameter sample is provided in zJOS-XDI product installation
package, in XDIEMS00 member. You should not tailor directly to any zJOS-XDI
PARMLIB member, including XDIEMSxx, which can destroy their sensitive binary
information. You should use XDI ISPF panel instead. Issue “XDI” in any ISPF
session, zJOS-XDI primary control panel will appear on your terminal screen as
shown in figure 2.2 below. Then click action bar, zJOS-XDI action bar menu will
appear in small window as shown in figure 2.2a. To reach the parameters, select
option 1 of action bar menu.

You have to customize Sekar provided sample parameter to fit your environment
prior to bring zJOS up at initial time. This to avoid unexpected situation, since
Sekar will be automatically brought up when zJOS address space initialization is
complete.

22 of 131 2. Getting Started

Figure 2.2: zJOS primary control panel

Although you don’t license Sekar nor need Sekar, you have to activate Sekar
with minimum EMS settings to have zJOS subsystem active. Select option 1 of
action bar menu.

Notes:

1. All zJOS-XDI ISPF panels have more than 24 rows and in some cases,
certain information indicated by color. Hence you must use extended
IBM 3270 terminal model 3 or 4.

2. Some menus are placed in action bar. Hence before you entering
zJOS session, make sure action bar is enabled in your ISPF settings.

2. Getting Started 23 of 131

Figure 2.2a: zJOS primary action bar menu

2.4. Starting and Stopping Sekar

You do not need to start Sekar at initial time, since it will up automatically. You,
however, need to restart it to work when it was down. Once you bring Sekar
down, it will remain down until you restart it back. When Sekar down, zJOS
subsystem function is inactive, so zJOS subsystem command is not available.
To bring it up back, issue the following MODIFY command:

F XDI,AUTO SSI

The following response will appear:

Figure 2.3: zJOS response to F XDI,AUTO SSI

Do not be mistaken to issue F XDI,AUTO START. It will activate MCS function
instead of subsystem, which is legacy from old zJOS version.

To bring Sekar down, issue the following command:

24 of 131 2. Getting Started

.AUTO STOP

Then the following response will appear:

Figure 2.4: zJOS response to AUTO STOP

Notes:

1. As Sekar is central control of all zJOS subsystem functions, zJOS
subsystem is only active when Sekar up. Hence bringing Sekar down
is not recommended.

2. Although facility to stop Sekar is provided, this only for maintenance
purpose.

3. When other zJOS function active, for example, when scheduler
(Puspa) is active, stopping Sekar causes unpredictable result.

2.5. Preparing National Holiday Table

In order to validate either event – action relationship in EMS or job triggering in
automatic scheduling, national holiday sometime is an important factor. Once
event/actions is set for certain date/time range, Sekar will automate it everyday
unless you unselect some certain days of week. Sometime you want Sekar to do
actions everyday to certain event except on the national holiday. Since it sound
very specific requirement, Sekar won’t know which days are your national holiday
until you provide it. zJOS-XDI provides national holiday table into which you
need to fill up all your national holidays.

To reach holiday calendar setup facility, select option 1 of action bar menu on
zJOS console interface (zJOS primary panel), then, zJOS parameter panel
appears as shown in figure 3.1. Before reach this panel, a window as shown in
figure 2.5a appears asking which PARMLIB dataset and suffix you are going to
use. You have to fill it if empty or change it or confirm it then press enter to let it
continue to zJOS parameter panel.

Parameter suffix must be filled with 2-digit xx to points to zJOS system parameter
XDISYSxx. Although any 2 EBCDIC characters are allowed, the 2-digit suffix
should be numeric characters.

2. Getting Started 25 of 131

PARMLIB dataset must be filled with name of partition dataset (PDS or PDSE)
which is being used or planned to be used as zJOS parameter library. If dataset
is being used by zJOS, by means concatenated as PARMLIB DD in XDI
procedure, all parameters you are going to manage can be activated soon. Else,
all parameters are just candidate for use later. You must concatenate the dataset
in PARMLIB DD of XDI procedure first.

Figure 2.5a: Asking/confirming suffix and library you are going to use.

Once suffix and PARMLIB are filled, and press enter key, then zJOS parameters
panel (figure 3.1) appears. On the zJOS parameter panel, then click option bar
(figure 2.5.b) and then select option 1 (holiday calendar).

Figure 2.5b: Option bar

Then, larger window is popped up and holiday table appears as shown in figure
2.6. Type S in front of certain entry to obtain its detail, and then you can update
it. To delete an entry, type D in front of selected entry, and then hit enter key. To
add a new entry, type A anywhere in S column or use menu in action bar.

26 of 131 2. Getting Started

Figure 2.6: National Holiday table

When you type S, selected entry is then displayed in subsequent popped up
window as shown in figure 2.7. You can make any changes as necessary on
this panel, and then hit F3 save it or F12 to abort it.

When you type A or select an option 1 of action bar menu, the same panel as in
figure 2.7 is then popped up with no entry. Fills up all fields, and then hit enter to
insert this newly added entry. The panel remains on the window until you hit F3
or F12. This to give you chances for next new entry. To fill up next new entry,
modify newly added fields, and then hit enter key again. When all new entries
were added, hit F3 to finish it and return to previous panel. Hitting F12 will abort
all newly added entries.
You can not update newly added entry straightly in this panel. Take a note that
every time you modify fields on this panel, a new entry will be added instead of
update existing entry. Hence to update newly added entry, hit F3 to return to
previous panel (holiday table), then type S in front of it as ordinary update
procedure.

2. Getting Started 27 of 131

Figure 2.7: Holiday table entry

2.6. Preparing System Startup Table

IBM z/OS MVS operating system provides system startup facility to do all
necessary works immediately after nucleus initialization process (NIP) complete,
by means COMMNDxx member of system parameters library. Each entry of
COMMNDxx is assumed as a valid MVS command text then passed to MVS
command processor for execution. Normally, you use COMMNDxx to bring
some application support tasks up, such as JES2, VTAM, TSO etc., and perform
some necessary preparation, such as allocating system dump datasets, and so
forth. Although any valid command can be executed, COMMNDxx does not care
of the affect. Hence, tasks that have inter-dependencies should not be started
together in the same COMMNDxx. For example, JES2 must up prior to VTAM,
and VTAM must already up prior to TSO (TCAS). Hence, COMMNDxx should
not be used to start JES2, VTAM and TSO together. Use it to start JES2
instead. When JES2 is up, start VTAM manually. Then start TSO manually
when VTAM is up.

Although such effort does not really matter, sometime it causes potential problem
when operators forget the sequent. In modern era right now, such case must be
avoided, and automation is the most effective solution.

28 of 131 2. Getting Started

Figure 2.8: System startup command table

To have fully automated system, you should automate system startup either. Let
Sekar to do complete system startup. To make sure all states can be monitored
by Sekar, zJOS address space must be the only system task up immediately
after NIP completed. Use COMMNDxx to start zJOS address space only instead.
All other tasks are started by Sekar, by means zJOS address space.

zJOS-XDI provides such facility as COMMNDxx, called system startup command
(SSC) table, which is executed immediately after zJOS-XDI base initialization
complete, and only if zJOS is started immediately after NIP. This means, such
mechanism not applicable when recycle zJOS, to guarantee SSC is executed
once during IPL period.

Since COMMNDxx only to start zJOS, all original valid content of COMMNDxx
should be migrated to SSC and EMS tables. SSC table should only contains
startup command for independent tasks. In most of MVS system, SSC contains
startup for JES, LLA, VLF, RACF and other independent tasks. The rest should
be migrated to EMS action table as action in respond to completeness of their
prerequisite tasks. For example, startup for VTAM is placed as action against
JES establishment message ($HASP492). Startup for TSO and TCPIP are
placed as action against VTAM establishment message (IST020I).

Setting up EMS tables will be discussed in next chapter. Discussion here is only
involving setting up SSC table. To do this, select option 2 of option bar menu,
then SSC table appears in popped up window as shown in figure 2.8. To insert
or add a new entry, type A in front of any entry or select option 1 of action bar

2. Getting Started 29 of 131

menu, then hit enter key. SSC entry then appears in subsequent popped up
window. You need to fill up only one field, a command text. When you hit enter
key, entry is inserted and panel remains in window for next new entry until you hit
F3 to save all newly added entries or F12 to abort them all. You can not update
newly added entry during this session.

Figure 2.9: System startup command table entry

To update the entry, type S in front of selected entry and hit enter key, then the
entry is popped up as shown in figure 2.9. Anything you overtype on the panel
will update the entry when you hit enter key. Hit F3 to accept the update and
back to previous panel. If you hit F12, session is back to previous panel and
update is aborted.

To delete the entry, type D in front of selected entry and hit enter key. Since
deletion function is done straightly on table session, once enter key is hit, you
can not abort it particularly. The only chance is, abort whole table.

To finish the SSC session, hit either F3 or F12. Hitting F3 will accept all you have
done to SSC table permanently and close SSC window. No way to restore
previous SSC table once F3 is hit. Whereas, hitting F12 will abort all you have
done to SSC table. Previous SSC table is then restored and SSC window is
closed.

Back to system startup, since you are using SSC table instead of COMMNDxx,
Sekar up prior to all non-NIP system tasks startup, which means, Sekar has a
chance to fully monitor all non-NIP system tasks. All independent non-NIP tasks

30 of 131 2. Getting Started

are started by SSC facility. Whereas all dependent non-NIP tasks are started by
action in respond to event which represent state of each their predecessor tasks.
For example, as independent task, JES2 is started by SSC. VTAM which depend
on JES2 is then started by action in respond to $HASP492 message which
indicates that JES2 is up. TCPIP and TSO which depend on JES2 and VTAM,
are started by action in respond to IST020I message which indicates that VTAM
is already up. Finally, system startup is fully automated.

3. Working with Sekar Parameters 31 of 131

Chapter 3 Working with Sekar
Parameters

To work with Sekar parameters, you have to login to zJOS administrator logonid,
TSO userid of which you were using to install zJOS-XDI package. Issue XDI
command in ISPF command line field on any panel of any session, then primary
zJOS control panel appears on ISPF window as shown in figure 2.2. Reach
action bar with cursor and click it (hit enter key) to open corner menu as shown in
figure 2.2a. Then, select option 1 (administering zJOS) to reach to parameters
panel as in figure 3.1. Before it is reached, a window is popped up asking 2-digit
suffix and zJOS PARMLIB you want to manage as discussed in 2.5 on chapter 2.

On the top of this panel is a menu to which product you want to go. To reach
Sekar parameters panel, select option 1 (system automation), then press enter-
key. At initial time, before you do it, you have to complete Sekar product key and
EMS suffix in this panel first. Ask your XDI support personnel to provide key.

Figure 3.1: zJOS parameters panel

32 of 131 3. Working with Sekar Parameters

3.1. Managed Event Table

Managed event table as shown in figure 3.2, is Sekar primary EMS table panel.
To reach this panel, select option 1 on zJOS-XDI parameters panel in figure 3.1.
The panel show you current EMS table suffix as you selected in previous panel.

Figure 3.2: Sekar event table panel

Managing event table

Managed event table panel (figure 3.2) provides facilities to manage event table
as described in figure 3.3, e.g.: Function keys, action bar menu and S column
prefix command. Function keys consist of 5 keys:

• F1 – obtain help panel or window
• F3 – save and close the table
• F7 – scroll up screen
• F8 – scroll down screen
• F12 – abort all changes and close the table.

3. Working with Sekar Parameters 33 of 131

Figure 3.3: Managing event table

Action bar provides facility to add a new entry. Exit choice in action bar menu is
to save and close the table, the same effect as hitting F3 key. Other facilities can
be done in S column. S column is an input column for 1-digit action character.
This gives you chance to manage the table. Valid action characters are:

• S – Select particular event entry in detail as shown in figure 3.4.
o This gives you chance to update the detail of selected entry

• T – Show associated action table as shown in figure 3.5.
o This gives you chance to manage action table of selected entry.

• D – Delete particular entry from the table.
• A – Add a new event entry to the table.

o Selected entry is ignored, then obtains detail event entry panel
with all field blanks and ask you to fill up.

o This can also be done from action bar selection menu.

Event columns

These are 2 columns describe event type and verb. Event type can be any one
of 5 valid event types, (MSG, CMD, TOD, EOS or EOJ). Event verb can be an
actual event verb, a part of event information or just a name to identify the event,
depend on the type of event. For MSG type event, verb is the first substring of
message text which is usually called message id. For CMD type event, verb is
the command verb. For TOD type event, verb is just a unique string. You can
use anything unique, for example “MORNING1”. For EOJ type event, verb is job
name of which to be detected. For EOS type event, verb is a combined job
name and job step name of which to be detected.

34 of 131 3. Working with Sekar Parameters

System column

This column show name of system on which event to be intercepted. For local
system, zJOS-XDI obtains actual system name based on specified SYSNAME=
parameter in your current IEASYSxx member in system parameter library. For
remote system, name is host name of the system in TCP/IP network. For z/OS
host, refer to value of HOSTNAME parameter specified in TCP/IP data.

Remote event can only be managed by Sekar if zJOS-XDI agent is active on that
associated remote host. Event will be detected by agent and reported to Sekar,
for actions. You can define associated actions in Sekar action table to be done
in local machine, in originating host machine, or even in other remote machine as
long as zJOS-XDI agent is ready.

Date and time columns

These are major timeframe columns which consist of start- and end-date, and
start- and end-time to filter whether event is valid to be processed. Checking is
done for each particular filter and only if one specified.

Day list and holiday column

These are minor timeframe to do second filter. Day list is list of valid week day
from Sunday to Saturday. Holiday means national holiday you have registered
in holiday calendar table. To continue processing, an event must comply that
current day is a valid day, means the day is selected day, including if a holiday.
By default, all 7 week days are selected if not holiday.

Saving and aborting changes

When you finish work with the event table and you want to save all changes you
have made, press F3. Update progress appears in small window, then panel
close and back to previous panel. XDIEMSxx member in XDI parameter library
is then physically changed.

When you want to abort all changes you have made, press F12 instead. The
abortion alert then appears in small window. Panel then close and back to
previous panel. XDIEMSxx member in XDI parameter library is then remains
unchanged. Take a note that abortion in this level is total cancellation. The
XDI/ISPF interface will not remember what you have done so far. If you want to
abort some changes you have made but not all, you must do abort particularly
while you were in event detail level. Be careful when you delete an event entry.
Delete command doesn’t have detail level panel. Once “D” was invoked,
selected event entry then instantly deleted from the table. To abort deletion you
have done, the only way is total abortion.

3. Working with Sekar Parameters 35 of 131

3.2. Event Entry

Each event entry listed on the table as shown in event table (figure 3.2 or 3.3)
can be zoomed in detail as shown in figure 3.4 when selected. Type S in front
of selected entry, then stroke enter key, then “Managed Event Detail” panel
appears in window. You can update each detail field on this panel.

All information on the previous panel appears in different form. Event verb,
system on which event occurs and major timeframe (date and time) fields appear
as data entry form. The rest appear as multiple choices menu and check boxes
forms to minimize human error.

Figure 3.4: Managed event detail

When you finish updating, press enter key, then update notification appear in
small window. Panel then close and back to previous event table panel. If you
want to abort the update you have made, press F12 instead. Abortion alert then
appear in small window. Abortion will only affect to this entry.

36 of 131 3. Working with Sekar Parameters

Figure 3.5: Detail event entry fields

Figure 3.5 explains in detail each field of event entry. In this example shows
detail if SHUTDOWN event entry. The type of event is command. Actually
MVS does not provide SHUTDOWN command. If you issue SHUTDOWN,
normally system responds with message IEE305I explaining that command is
invalid. With Sekar, you can make SHUTDOWN and other invalid commands
become valid and execute certain process as what you want. Meanwhile, you
can also change valid commands become invalid.

The process in respond to SHUTDOWN command is actually action or series of
actions as you define in action table of EMS. When SHUTDOWN command is
issued, Sekar captures it before MVS evaluating it, and followed by execution of
defined actions in associated action table.

3. Working with Sekar Parameters 37 of 131

33..22..11 Event verb and System

Event verb and system name on which event occurs are a major part of event
identifier. Except for TOD event, the text of verb is normally a part of information
generated by or associated with the event. Verb text length is 1 to 20 bytes. For
TOD event, the verb text is any unique string as explained in paragraph 3.1 in
this chapter.

Minor part of event identifier is event type, which is message, command, TOD,
EOJ or EOS.

MSG Event

Event verb of MSG event normally message id. You can use first substring of
message text starting from message id. Every occurrence of message from
message processor, before it is reached in neither console buffer nor syslog, SSI
part of Sekar catches it and evaluates it. The first evaluation is comparing it with
event verb of each MSG event entry in event table. This step is done in address
space of originating the event. Every matched entry found, event is then posted
to action processor in zJOS address space, and message is returned to system
with indicator whether to be suppressed according to suppression request stated
in its entry in event table.

CMD Event

Event verb of CMD event must be a command verb. Sekar doesn’t care whether
the command is a valid system command or just an abbreviation. As long as its
verb is matched with any one of CMD event entries in event table, Sekar SSI
then post a signal to action processor to continue event processing. Command is
intercepted very soon after its issuance, before targeted command processor is
reached. Matched command will never be returned back to the system.

Since command validity is not checked, you have a chance to make your own
command without writing program. For example, “SHUTDOWN”, as shown in
figure 3.5, actually is not a valid command in z/OS environment. Regardless its
validity, in Sekar, it is registered in event table and some actions are provided in
associated action table. So, when verb “SHUTDOWN” is issued, it’s matched
and all associated actions are executed. The command itself is never returned
back to the system, hence message IEE305I which telling that “SHUTDOWN” is
an invalid command is never shown.

TOD Event

Event verb of TOD event is not part of event information. It can be any unique
string just to identify the event entry visually. The way TOD event is catched

38 of 131 3. Working with Sekar Parameters

internally very different with other event types. Timeframe information is used as
timing specification which can be added with interval for periodic TOD event. To
catch TOD event, actually during initialization Sekar sets timer according timing
specification. Hence actually TOD event is created, instead of just intercepted.

EOJ Event

Event verb of EOJ event is name of the job. Sekar doesn’t care whether jobname
is duplicated or used by wrong job, as long as matched with jobname of any one
of defined EOJ entries. Though always unique, jobid can not be used, because
it can not be predefined, since it is generated only when job is started.

EOS Event

Event verb of EOS event is a combined of 8-byte jobname and 8-byte jobstep
name. Sekar doesn’t care whether combined jobname-stepname is duplicated
or used by wrong job, as long as matched with jobname-stepname of any one of
defined EOS entries.

33..22..22 Timeframe and Timespec

Timeframe is combined of major and minor time filter during which event is
monitored. Timeframe is applicable for all types of events, except for TOD.
Whereas, timespec for TOD event only. Timespec is such timeframe during
which TOD event is set to occur.

Start-date and end-date

In most event types, start date and end date are major time filters during which
event occurrence is eligible for further evaluation. No default for start- and end-
date. If blanks or zeros, no filtering is done, rather, straightly to check clock time
level filter. In event table panel appear as ‘****/**/**’ and in event detail as blanks.
Date can also be specified partially, for example, ‘****/09/**’. This means, Sekar
only evaluates month. Be careful to specify partial date range. Lets say, if you
specify date range ‘****/09/**’ to ‘****/**/**’, you got the same effect as‘****/09/**’
to ‘****/12/**’. Sekar grants the action in month 09, 10, 11 and 12. If you expect
to be granted only in every September, you must specify ‘****/09/**’ to ‘****/09/**’.

Other example, to get granted on every 1st to 10th monthly, you must specify date
range ‘****/**/01’ to ‘****/**/10’. To get granted on every 1st to 10th monthly in
every 1st semester, you need to specify date range ‘****/01/01’ to ‘****/06/10’. Be
careful, for partial date-range, specified value in start date must not higher than
end date. Wrongly specified date-range will cause entry is flagged as error entry
and will never be used to evaluate date-range filtering. It will affect to your whole
automation system if this entry is related to other entries.

3. Working with Sekar Parameters 39 of 131

For TOD timespec, start date and end date are major time range during which
TOD event is set to occur. No default for start- and end-date. If not specified or
set to zeros, no date range is set, rather, just clock time level setting. In event
table panel appear as ‘****/**/**’ and in event detail as blanks.

For both timeframe and timespec, start date and end date, when specified, must
be valid calendar date. Start date must be logically happen prior to end date.
Otherwise, event entry will be marked as error entry and appropriate event will
never be monitor, or TOD will never be set.

Start-time and end-time for non-TOD events

In most event types, start time and end time are second major time filters during
which event occurrence is eligible for further evaluation. Default start time is
00:00:00 and end time is 24:00:00. Leave them both default means, no filtering
is done in this level, rather, straightly to minor time filters. Hence, any time event
occurs during valid start- and end-date, will be considered as valid event and
filtering is continued to minor timeframe.

Such time filtering is applicable only for MSG, CMD, EOJ, and EOS type events.
Time interval is not applicable. If you fill it up, Sekar will ignore it.

Start-time, end-time and interval for TOD event

For TOD timespec, start-time and end-time are second major time range during
which TOD event is set to occur. Default start-time is 00:00:00, means timer is
set to start at 0:00:00. Take a note that start-time for TOD timespec is not a
time to begin event monitoring, rather, an exact start of timer. This means, TOD
event occurs exactly at start-time.

Time interval (optional), when specified, means timer is set periodically. TOD
event occurs at start-time, and reoccurs periodically in every time interval, until
end-time is reached. Default end-time is 24:00:00, means timer is set to stop at
24:00:00. End-time is meaningful only for periodical TOD event. Unless interval
is specified, TOD event occurs once only at start-time and end-time is ignored.

Valid day-list and holiday

Beside first and second major timeframe or timespec, you are offered other
chances to validate events based on day-of-week and holiday. Day-list offers
which day-of-week during major timeframe/timespec, specified event is valid to
be responded with associated actions. To choose the day-of-week, mark check
box in front of selected day name with slash. By default, all days are selected.
This means, event will be executed everyday during date and time range.

40 of 131 3. Working with Sekar Parameters

Holiday here means national holiday. It offers whether you want to treat event
differently on the holiday. By default, holiday is selected. This means, national
holiday will be ignored by event filtering process. If you unmark holiday check
box, event will not be executed on holiday, although that day is selected in both
day-list and date-range.

National holiday is national specific calendar. Hence it can not be provided by
zJOS-XDI. Before you can use holiday, you must build your national holiday
table based on your national calendar. See par 2.5 in chapter 2 for detail about
preparing holiday table.

Triggers Shutdown

If you fill “Y”, when this event occurs, zJOS then decides to enter shutdown state.
This means, subsequent events processing will only execute actions that stated
applicable during shutdown state.

Figure 3.6: Example EOJ event detail for MYJOB001

Examples

Figure 3.6 show you example of the detail of EOJ event. EOJ event of job
MYJOB001 in system SYSPROD1 is monitored on every Monday and Thursday
at 08:00:00 to 17:30:00 from January 1st, 2004 until December 31st, 2010.
Holiday is ignored, means, monitoring is still performed although selected day is
holiday. This event not trigger Sekar to enter to shutdown state.

3. Working with Sekar Parameters 41 of 131

Lets say today is Monday, March 5, 2007. If job MYJOB001 is running, when it
ends at 08:10:00, generated EOJ event is captured and associated actions are
then executed. But, when it ends at 07:59:59, is ignored, no action is taken.

Tomorrow is Tuesday, March 6, 2007, although within valid date range, is not
valid day, so such event is not monitored. Next valid day is Thursday, hence
EOJ event for job MYJOB001 is back monitored on Thursday, March 8, 2007.

If system SYSPROD1 is not local system, event monitoring is not performed
unless zJOS-XDI agent is active on that system. If agent is active, monitoring is
performed in the way as local system, except, event information is not processed
locally, rather, is sent to zJOS/Sekar server. Timeframe up to final evaluation is
performed by Sekar server, and then actions execution is triggered. Each action
will be executed on each specified system. If targeted system on action entry is
not local system, action entry is then sent to targeted system. Agent must
targeted system must already active.

If you want, you can update each field on that panel screen, and then press enter
key. Update is aborted if you press F12 key. All fields are updatable, including
event verb and type. Hence, when you want delete an event entry and at the
same time you want to add a new entry, you can do this way. Select (type S) the
entry you want to delete, and then update its all fields with new entry information.
When you press enter key, old entry is then replaced with new entry.

Figure 3.7: Example TOD event detail for MIDNIGHT

Figure 3.7 shows other example, TOD event, in this setting called MIDNIGHT.
The name of MIDNIGHT is not real event name, rather, just a unique name to
identify the event. Event is set to occur at 23:55:00 and reoccurs in every minute
until 24:00:00, everyday except holiday, since Jan 1, 2007 until Dec 31, 2010.

42 of 131 3. Working with Sekar Parameters

Note:
TOD is very common information, so, to capture TOD event on remote
system, you don’t need agent to send TOD event. You can just easily use
local TOD to trigger actions on remote system. Based on this perception,
TOD event entry definition must be local event, so specified system name
SYSPROD1 on this example, must be local system name.

3.3. Action Table

Figure 3.10: Action table

Action table is a list of one or more actions associated to an event entry. When
an event occurs, all actions in associated action table are performed. Although
issuance of actions is done serially, there is no guarantee execution is performed
serially by MVS. Hence, strongly recommended not to put action definitions
which have inter-dependencies each other in an action table.

Action table can be reached from either event table (figure 3.2) or event detail
panel. If you are in event table panel and want to reach action table of selected
event directly, type T in front of selected event and then hit enter. Action table is
then popped up in a window. Figure 3.10 shows action table window popped up
from event detail panel when option 1 of action bar menu is selected.

3. Working with Sekar Parameters 43 of 131

Action table consist of 3 major columns, action type, system and action text or
parameter. To avoid loosing track, short information of event is displayed on
heading region of this panel. All actions information on this panel are protected.
To make changes, you have to follow its update role using prefix command.

Managing Action Table

First column in action table panel is prefix command column, is not table column,
rather, column in which you can issue commands to manage the action table,
called prefix command. Valid prefix commands are:

1. S – Select an action entry and display in detail as shown in 3.11.
2. D – Delete an action entry.
3. A – Add or insert a new action entry.

You can not directly overtype the content of action table on this panel. Instead,
you must select a specific entry by typing S and Sekar will obtain the detail action
in next window.

This panel is scrollable, so, you can scroll it up by hitting F7 and down by hitting
F8 as normally applied in most of ISPF applications. To exit from action table
panel session and save all changes you have done, hit F3. To abort all changes
and restore whole table, hit F12.

Action type column

This column shows both action type code and description, and must be either
one of 3 valid action types. As shown in figure 3.10, action type is REPLY which
is internally coded as 2.

System column

This column shows name of system on which this particular action to be done.
For local system, name must be system name as defined in IEASYSxx member
of system parameter library, or blank. For remote system, name must be network
host name as defined in HOSTNAME parameter in TCP/IP profile or node name
specified for VMCF when you start EZAZSSI procedure. System name here can
either the same as or different from system name specified in event entry. Such
facility gives you a chance to capture an event on certain system in the network
and perform actions on any system in the same network.

Action text column

This column shows action text or parameter. For command type action, action
text is complete command text. For reply type action, action text is reply text.
For rule type action, action text is member name of designated rule in rule library.

44 of 131 3. Working with Sekar Parameters

3.4. Action Entry

Figure 3.11: Action detail

As described in previous paragraph, action entry consists of 4 major fields, action
type, targeted system and action text/parameter. Figure 3.11 shows action entry
displayed on action detail panel. To reach this panel, type S in front of selected
entry on action table panel (figure 3.10), then hit enter key.

The heading line shows associated event definition to help you keep on track.
Detail action consists of action text, targeted system name, action type and state
in which action is applicable.

Action text/parameter

As describe on the above par, the mean of action text or parameter depends on
the type of action. Note that for any type of action, Sekar will not validate the text
prior to execution. Hence, you have to care that the text must be valid as what
you expect.

3. Working with Sekar Parameters 45 of 131

For command type action, the text is complete command text. Sekar will execute
the text as it is, hence you have to make sure the text you specified must be a
valid command text. Otherwise, command will be rejected by the system.

For reply type action, the text is reply text only. Sekar will build complete reply
command text which consists of “REPLY” verb and reply id and followed with
reply text exactly as what you specified. Hence, the text must be valid reply text
against WTOR you expect to receive. Otherwise, reply will be rejected by the
program issuing WTOR or it could cause unexpected result.

For rule type action, the text is a name of member of designated rule in your rule
library. Sekar will not check whether the member exists. Instead, it just issues
START XDIRULE,M=argument with specified action text as argument. If your
specified text does not match any member, the rule executor terminated with
IKJ56500I message explaining that the command not found.

Target system

This field is a name of the system on which action is targeted to be executed, as
explained on the above par. In respond to event that occurs in a certain system,
action can be executed on any connected z/OS system within zJOS integrated
network configuration. For multiple actions, each action can be addressed either
to the same or different system.

At the moment Sekar only supports z/OS and OS/390 system. XDI development
team is preparing and designing zJOS agents for some other platform, includes
Linux, Unix and Windows. Next version of zJOS, Sekar will support some other
platforms.

Action type

As mentioned above, at the moment, Sekar only provides 3 action types. Which
are command, reply and rule. Please refer to action text for detail explanation for
all action types.

To minimize mistake, action type field appears as multiple choice menu. To fill it
up, you have to code selection number which is actually internal code of action
type. Currently, valid input is 1 for console command type, 2 for reply type, or 2
for rule type.

State applicability

To establish perfect automation, Sekar provides 3 type of state applicability for
each action. They are: IPL, normal and shutdown states. You must specify
whether action is applicable during a certain state, two of them or all states. Only

46 of 131 3. Working with Sekar Parameters

actions that match with the state during which the event is occurred are eligible
for execution.

IPL state

Is a short time range that follows IPL process. IPL state is ranged since
NIP (nucleus initialization process) completion up to standard system
startup complete. This state will only recognized by Sekar when zJOS is
started exactly following the NIP (registered in COMMNDxx). During this
state, Sekar executes all specified commands in SSC table. When defined
events occur, Sekar will only execute associated actions which stated
applicable in IPL state.

Sekar automatically change the state to normal state when system startup
completes. Normally, completion of system startup is indicated by
readiness of all system access facilities, such as, JES for batch job, VTAM
and TCPIP for online interface in SNA and TCP/IP network environment,
and OMVS for USS processes.

If you start or restart zJOS not follow NIP, for example you issue START
XDI manually, Sekar will not experience IPL state, instead, entering
normal state directly. If so, SSC table will not be executed.

Normal state

Is a long time range since completion of system startup until a certain
event that you defined to trigger shutdown state is occurred. During this
state, when defined event occurs, Sekar will only execute associated
actions which stated applicable in normal state.

Shutdown state

When an event that you defined to trigger shutdown state is occurred,
Sekar then change the state to shutdown state. When defined events
occur, Sekar will only execute associated actions which stated applicable
in shutdown state. Some EMS internal (subsystem) functions are disabled
immediately as well.

Once state is changed to shutdown state, it will never change again to
other state unless you recycle zJOS address space. Shutdown state is
design to isolate some certain internal processing and establish a specific
situation which supports shutdown procedure. Hence all actions you
define to respond event that triggers shutdown state must perform any
relevant processing to shutdown steps.

3. Working with Sekar Parameters 47 of 131

Example

In figure 3.11, command action of “START TCPIP” is defined to be executed on
system MFOC to respond against message IST020I on system MFOC too. This
action is applicable during IPL state only. This is a good example to understand
real application of EMS. Message IST020I indicates VTAM startup is complete,
which normally happen during system startup. One of actions to respond such
situation is bringing TCPIP up, since TCPIP address space needs some VTAM
services. Nevertheless, VTAM might be recycled for a certain case. When VTAM
is brought down, TCPIP may remain although its functions are suspended until
VTAM is back up. Without state classification, you have to stop TCPIP prior to
recycle VTAM, because, TCPIP will be brought up again when message IST020I
occurs upon completion if VTAM recycling. Such case causes constrained policy
in automation project.

With state categorization, such constrained policy is eliminated. By specifying
this action is applicable only during IPL state, you can recycle VTAM anytime
outside IPL state without impacting TCPIP. Because, this action is ignored when
IST020I message occurs in normal or shutdown state.

3.5. Action Variables

Variables are provided by Sekar to give you chance to substitute action text “on
the fly” just before fired. Substitution is done by Sekar based on caught event
information. At the moment, there are 3 action variables supplied by Sekar;
&ARG, &JOB and &UID.

33..55..11 &ARG Variable

&ARG variable is an action variable to hold command arguments from a caught
command event. When an expected command event is caught by Sekar, you
can use its arguments in your action text by inserting &ARG variable. However,
take a note that &ARG will only contain arguments outside command verb you
specified in event entry. For example, if specified command verb is SHOW, then
&ARG will hold anything following verb SHOW. When someone issues SHOW
MY DATA, then &ARG will contain MY DATA. However, if specified verb in the
event entry is SHOW MY, &ARG will contain DATA.

Figure 3.12 to 3.12e show a case that you want to define your own command
called KILL. KILL is actually not a command. When you issue KILL command on
the console in a standard z/OS environment, message IEE305I is then prompted
as shown in figure 3.12 to alert you that KILL is an invalid command.

48 of 131 3. Working with Sekar Parameters

Figure 3.12: KILL is an unknown command

Using Sekar, you can use word KILL as a valid command. First, you define a
command verb KILL in the event entry panel as shown in figure 3.12a. The verb
is KILL and the type is 2 (CMD). In this case, KILL command capturing enable
all the time any date and any day.

Figure 3.12a: Registering KILL command event entry into events table

Figure 3.12b: Entry detail of KILL is added to the event table.

3. Working with Sekar Parameters 49 of 131

When you hit enter key, system prompts that KILL was added as shown in figure
3.12b. Hit enter again, then action entry detail panel is popped up. Next is
defining action text ‘CANCEL U=&ARG’ as shown in figure 3.12c. This means,
when someone issue KILL IBMUSER, command will be trapped by Sekar and
‘CANCEL U=&ARG’ action text is then substituted to ‘CANCEL U=IBMUSER’
and fired. So KILL becomes synonym of ‘C U=’ or ‘CANCEL U=’ command.

Figure 3.12c: Registering action for KILL cmd event

Now, KILL command and its action were stored into Sekar database. However,
these are not effective until you issue LOAD request for Sekar. Soonest after
LOAD request was issued, KILL command then become a valid command as
shown in figure 3.12d. Refer to par 4.2 in chapter 4 for LOAD request.

Figure 3.12d: KILL becomes a valid command

50 of 131 3. Working with Sekar Parameters

The action table, when you enter T against event entry of KILL on event table
panel will appear as shown in figure 3.12e.

Figure 3.12e: &ARG variable shown in action table entry for KILL cmd event

Now you understand that &ARG variable effectiveness for command event.

33..55..22 &UID and &JOB Variables

Unlike &ARG variable which is designed for command events, &UID and &JOB
variables are for either command or message events. &UID variable will be
substituted by userid of a TSU, a JOB or an STC from which a trapped message
event was sent, or by which a trapped command was invoked. &JOB variable
will be substituted by jobname of a JOB, a TSU or an STC from which a trapped
message event was sent, or by which a trapped command was invoked. For a
TSU, jobname and userid are the same, so &UID and &JOB will result the same.

3.6. Applying Sekar Parameters

All Sekar parameters we have discussed in previous paragraphs, automatically
loaded at the first time Sekar is activated, e.g. when zJOS address space is
started up. When you update them while Sekar is active, newly updated
parameters will not automatically effective until you reload them or recycle zJOS
address space. Refer to chapter 4 paragraph 4.2 for further explanation about
how to reload Sekar parameters.

4. Controlling Sekar 51 of 131

Chapter 4 Controlling Sekar

As an automation system or event management system (EMS) solution, Sekar
has complete capabilities to control the system. Most of interaction activities
which usually performed by operators can be handled by Sekar. Combined with
automatic workload scheduling (e.g. Puspa), automatic spool/report distribution
(e.g. AutoXfer) and tape management system coupled with robotic feature, you
would have fully automated system which drastically reduces human
intervention. Though, it does not mean your system can totally operate itself. It
will still need human intervention, at least to control Sekar.

Controlling Sekar is very simple. You only need to interact with zJOS address
space via console or via TSO/ISPF interface. Later when you already familiar
with zJOS-XDI, you might automate some control interactions using Sekar itself.

4.1. Status Information

When you issue ”.STATUS” on console or just press enter on zJOS control panel
in XDI session in TSO, zJOS operation status information is then displayed. On
console, status information appears as follow:

Component- Stat- -Agent-- Tbl Works -Usage-- #dayX
Sekar (EMS) UP ACT(SSI) IN 00005 LICENSED none
Puspa (SCD) DOWN INACTIVE OUT 00000 **DEMO** ..?!
AutoXfer UP ACTIVE IN 00000 **DEMO** ..?!
Net-Server DOWN INACTIVE N/A 00000 standard none
zJOS XDI statistics:
Config: SSN=XDI Load=LPA COM=0802A3A0 WSA=00C42F90
Subtasks: Major=009 EVX=000 SVR=000 SCD=000 Abn=000
Network agents: total=0000 active=0000 local=N/A
Network traffic: Snd=00000000 Rcv=00000000 Que=0000 0
JES I/F: Up=Y PIT=Y Conn=Y Irdr=Y FR(5=N,12=Y,22=N)
Queues: ARQs=00001 SQBs=00000 EOTs=00000 RMG=0000 0
State: NORMAL Parm: SYS=00 EMS=00 SCD=00 DEST=00
SCD: Lib=O O=EVXMS M=EVXMS Pos=EVALUATE-JMR EnQ=FREE

On TSO/ISPF XDI session, zJOS status information appears as in figure 2.2.
Both are similar except for the following additional rows showing statistics of DIV
utilization for Puspa (scheduler) which only applicable in zJOS control panel on
TSO/ISPF XDI session:

52 of 131 4. Controlling Sekar

SCD Free-pool: SCT=009588 TRG=0199479 EOT=050000 0
SCD Used-pool: SCT=000412 TRG=0000521 EOT=000000 0
SCD Curr-pool: SCT=000024 TRG=0000047 EOT=000000 0

Status information consists of 2 major information areas:

1. Product status information
2. Statistic information

44..11..11 Products Status Information

Products status information is information regarding each specific zJOS-XDI
product or component. There are 4 components bundled in zJOS-XDI package
and run together in XDI address space:

• Sekar – event management system (zJOS product)
• Puspa – automatic scheduling system (zJOS product)
• AutoXfer – automatic spool distribution (XDI product)
• Net-server – socket server program (zJOS standard feature)

Products status information is shown as a simple table which is the first part of
status information, as shown below:

Component- Stat- -Agent-- Tbl Works -Usage-- #dayX
Sekar (EMS) UP ACT(SSI) IN 00000 LICENSED none
Puspa (SCD) UP READY IN 00000 **DEMO** ..?!
AutoXfer DOWN INACTIVE OUT 00000 **DEMO** ..?!
Net-Server DOWN INACTIVE N/A 00000 standard none

Stat column

The above information describes whole status of zJOS-XDI products. Status of
Sekar is indicated by red color. Stat column describe whether the product UP
or DOWN. UP indicates the product is active, and DOWN indicates the product
is inactive. You must activate the product if you want it work for you. To activate
Sekar, issue F XDI,AUTO SSI as described in chapter 2, paragraph 2.4. You
can also issue F XDI,AUTO START, but Sekar will active supported by MCS
agent, which is actually legacy from XDI version 2.1.1. Strongly recommended
not to use MCS, unless, you are assisted by XDI support personnel

Agent column

Agent column shows current internal agent activity. For Sekar, there are 2 type
internal agents, SSI or MCS. MCS is legacy from XDI version 2.1.1 and should
not active unless SSI agent got serious problem. MCS internal agent currently is

4. Controlling Sekar 53 of 131

used by XDI support personnel for debugging purpose only. Normally internal
agent shown as ACT(SSI) if its status is UP, which means Sekar is up and
current activities is supported by SSI internal agent. If you find Sekar status UP
and internal agent INACTIVE, please call XDI support personnel immediately.

Tbl column

This column shows status of parameters table, which is indicated as IN or OUT.
IN indicates parameters table is already loaded, and OUT indicates that table is
not loaded yet or unsuccessfully loaded.

For Sekar, if status is UP, table must be IN. If you find Sekar status UP with
table OUT, issue .AUTO RELOAD and recheck the status. If table remains OUT,
you must recheck Sekar parameters using XDI ISPF interface as explained in
chapter 3. Make sure you have already prepared Sekar parameters. If all event
table and all associated action tables have already been prepared, please
recheck to make sure you address the 2-digit suffix currently assigned for Sekar
table correctly in XDI system parameter. If table and its suffix are correct and
you still got the same problem, try recycling Sekar. Issue .AUTO STOP, then
issue F XDI,AUTO SSI . Please call XDI support personnel immediately if you
find the problem persist.

Work column

This column shows cumulative number of works on the current day since 0:00:00
clock. For Sekar, number of works represent number of actions has been done.
It does not matter if Sekar is permanently or yearly licensed. It only impacts only
during demo period, where Sekar available for you only 30 works per day.
When this work limit is reached, although shown remain up and active, Sekar will
ignore all subsequent events until next day.

Usage column

This column describes whether the product is in demo period or already licensed.
DEMO indicates the product is in demo period and the key is expired and will
be limited for 30 works per day. Ask XDI support personnel for renewal.

LCNSD/YR indicates the product is yearly licensed. In this kind of usage, you
have to ask XDI representative personnel to renew the product key once a year.

LICENSED indicates the product is permanently licensed. In this kind of usage,
you don’t need product key anymore. Product will always available for you unless
you change the hardware or system identifier. Hence, if you license XDI product
permanently, you have to notify XDI representative personnel when you change
your hardware or reconfigure you system.

54 of 131 4. Controlling Sekar

#dayX column

#dayX is number of day’s product key to expire. This is an important notice for
yearly licensed usage only. If product is permanently licensed, this column is
shown as ‘none’. Non permanent licensed users should pay attention to this
information. You will be warned when #dayX is less than 30 days.

44..11..22 Statistics Information

Statistics information is recorded statistics data regarding activities of each
important zJOS-XDI task and/or routine in XDI address space.

Config: SSN=XDI Load=LPA COM=0802A3A0 WSA=00C42F90
Subtasks: Major=009 EVX=000 SVR=000 SCD=000 Abn=000
Network agents: total=0000 active=0000 local=N/A
Network traffic: Snd=00000000 Rcv=00000000 Que=0000 0
JES I/F: Up=Y PIT=Y Conn=Y Irdr=Y FR(5=N,12=Y,22=N)
Queues: ARQs=00001 SQBs=00000 EOTs=00000 RMG=0000 0
State: NORMAL Parm: SYS=00 EMS=00 SCD=00 DEST=00
SCD: Lib=O O=EVXMS M=EVXMS Pos=EVALUATE-JMR EnQ=FREE

Configuration line

This is actually not a statistic, instead, just show current internal configuration of
zJOS-XDI in XDI address space. Shown in this line, subsystem name (SSI) for
zJOS-XDI as assigned by SSN keyword in XDI procedure or in START command
when XDI was started. On the above example shown SSI=XDI, which is the
default.

COM and WSA show address of current communication and working storage
area control blocks. These are shown here for debugging purposes only.

Subtasks line

These are statistics which describes current active zJOS subtasks within zJOS
address space. Major=nnn shows number of major subtask which are currently
active. Normally zJOS is supported by 10 major subtasks when run on a single
system, or 11 major subtasks when run on networked systems.

EVX=nnn shows number of active event executor minor subtask which is belong
to Sekar. It can be tens or even hundreds depend on current workload. But,
since most of EVX minor subtask is typically once work task, it up in very short
time, hence you will find EVX looks likely always 0.

4. Controlling Sekar 55 of 131

SVR=nnn shows number of active server’s worker. When automation was setup
for networked systems, zJOS server must up to handle connection with all
agents from all connected hosts. Server is typically a concurrent socket server,
which must able to interact with more than one agent at the same time. To do
so, worker subtask is assigned for each connection. Hence, nnn here represent
number of currently connected agents. Server is a major subtask of which main
function is port listener. Whereas, server’s worker is a minor subtask.

SCD=nnn shows number of active scheduler minor subtasks which is belong to
Puspa. It can be tens or even hundreds depend on current workload. But, since
most of SCD minor subtask is typically once work task, it up in very short time.
Because there is only one SCD minor subtask which is assigned to be up along
with scheduling activities, hence you will find SCD looks likely always 1 when
Puspa is working.

Abn=nnn shows cumulative number of abended subtasks since XDI address
space was started. Each zJOS task and/or routine is accompanied with ESTAE
type recovery handler. Hence, you should not worry with this indicator. It just
for XDI supports personnel to inform R & D site for future enhancement.

Net-agent line

This is statistics of network connection, which represent number of generated
network connection control blocks (NETCCB). When Sekar EMS table is loaded,
and when Puspa schedule table is loaded, number of non-local system names is
recorded. When zJOS Server is activated, it then generates NETCCB, one for
each non-local system. Total number of generated NETCCBs is shown as
total=nnnn. Active=nnnn shows number of NETCCBs currently being used for
agent connection. Hence, active=nnnn represent number of currently connected
agents. It must also the same as shown in SVR=nnn in subtask line.

Network traffic line

This is statistics of server-agent interaction. Each transaction accompanied by
network access control block (NACCB) to hold send/receive control status and
data being sent or received. R=nnnnnnnn shows number NACCB received by
server. S=nnnnnnnn shows number of NACCB sent to agents. Q=nnnn shows
number of NACCB which still in queue for service.

Queues line

This is actually workload statistics. In normal situation, all of these queues are
zeroes, which means all workloads are processed instantly. When automation
workloads are too high, for example too many events are being processed (for
Sekar), and/or too many jobs are being scheduled (for Puspa), then might some
workloads must be queued.

56 of 131 4. Controlling Sekar

Such situation can also happen when system too busy. For example, in peak
time when the system is overloaded, all tasks are slowing down, including zJOS
address space. Hence, it impacts zJOS work slower, which is causing some
automation workloads must be queued.

ARQ=nnnn shows number of action request queue blocks, which represents
number of currently queued action requests. This represents Sekar performance.

SQB=nnnn shows number of scheduler queue block, which represents number of
currently queued schedule requests. This represents Puspa performance.

EOT=nnnn shows number of end-of-task event blocks, which represents number
of currently queued job status events. This represents Puspa performance.

RMG=nnnn is for XDI internal R & D only.

SCD trace: O=EVX M=EVX Pos=ASID-STACK EnQ=FRE E

SCD trace line

This is scheduler trace information, which is for XDI internal R & D only. When
you report problem with scheduler (Puspa) to XDI supports personnel, this trace
information should be reported as well.

4.2. Reloading Sekar Parameters

Sekar parameters, which are an event table and a number of action tables, each
associated with one event entry, physically are placed into a single sequential file
called XDIEMSxx, which is a member of XDI parameters library. The two-digit
suffix ‘xx’ can be any valid numeric combination. You can have more than one
XDIEMSxx, for example XDIEMS00, XDIEMS25 etc., but, only one XDIEMSxx
effective at a time.

As an ordinary partitioned dataset or library (PDSE) member, you can copy or
rename XDIEMSxx in XDI parameters library either interactively using ISPF/PDF
tools or in batch using DFSMS tools. However, you must not straightly edit it.
There are some binary and packed decimal fields which

When you update Sekar parameters will automatically loaded at the first time
Sekar is activated, e.g. when XDI address space is started up.

4. Controlling Sekar 57 of 131

At current product level (2.1.9), applying parameters can only be done in batch.
If Sekar is already up and you make updates, Sekar will not automatically load
them. Either, you can not load each particular entry. To make your update
effective, you have to issue the following console command to ask Sekar to
reload whole event and all associated action tables.

.AUTO RELOAD

or

F XDI,AUTO RELOAD

Then Sekar will reload all parameter tables pointed with current or most recent
used suffix (default is 00).

Figure 4.1: RELOAD command and its response

58 of 131 4. Controlling Sekar

If you want to use other suffix, use the following command:

.AUTO RELOAD,TAB=xx
or

F XDI,AUTO RELOAD,TAB=xx

Where xx is 2-digit suffix you are currently using it to manage newly updated
parameters. Once loading is completed, all outstanding actions are purged, and
all newly updated parameters will immediately effective and xx become your
current suffix. Next time when you issue RELOAD without TAB= keyword, Sekar
assumes TAB=xx. Please take a note that if reloading process is failed, you
have to reissue the above command.

5. Integrated Automation 59 of 131

Chapter 5 Integrated Automation

In previous chapter (chapter 3), we have clearly discussed how to manage Sekar
parameters in zJOS-XDI parameters library. In either event or action tables, there
is a parameter named system name. This name reflects to system or host name
on which event is occurs, to which each action is targeted. All describe that EMS
can be established on multiple interconnected z/OS machines. Yes, Sekar gives
you a chance to establish integrated automation among interconnected z/OS
hosts.

5.1. Integrated zJOS Network

Integrated zJOS network means, zJOS installation which is distributed among
host on networked-z/OS. Networked-z/OS in this manner is not a multi-sysplex
in cross-coupled (XCF) configuration, instead, is a network of 2 or more
interconnected z/OS hosts in TCP/IP protocol. Both hardware and software
must meet TCP/IP base network requirements. zJOS server on one z/OS
system and several zJOS agents on other hosts which may either z/OS or
OS/390 system

55..11..11 Hardware Requirements

To establish TCP/IP network among several z/OS hosts, the following hardware
requirements must be complied.

1. z/Series compatible system processor complete with minimum host basic
configuration, including DASD, console, terminal display station, tape drive
and so forth.

2. TCP/IP capable connection station, such as OSA channel, CTC paired
channel, or ordinary channel with XCA attached and so forth.

3. TCP/IP capable connection media, such as ESCON or FICON optical
cable, satellite sender/receiver equipment, or ordinary telecommunication
cable.

4. IP routing facility as necessary.

All the above materials must be physically installed, connected, setup and well
tested. Review each of them and ask vendor support to make sure everything is
ready.

60 of 131 5. Integrated Automation

55..11..22 Software Requirements

To establish TCP/IP network among several z/OS hosts, the following software
requirements must be complied for each z/Series host.

1. Copy of licensed IBM z/OS complete with minimum host basic program
configuration, including JES2, TSO, SDSF, ISPF and so forth.

2. Copy of licensed IBM Communication Server (CS) for z/OS which
minimum consist of VTAM, TCPIP, VMCF and IUCV.

All the above software materials must be physically installed, well setup and well
tested. Review each of them and ask vendor support to make sure everything is
ready and comply with the following states:

• Complete z/OS copy is well setup on each z/Series machine, each with
a unique system name defined in IEASYSxx parameter.

• Complete CS for z/OS is well setup on each z/Series machine, each
with host name (defined in TCP/IP profile) equal to system name
(defined in IEASYSxx).

• When z/OS is booted, make sure the following states are complied:
o JES2, OMVS, VTAM and TCPIP are up.
o API for socket programming is available.
o Ping and/or signon (telnet) is well verified.

Figure 5.1: Networked-z/OS

5. Integrated Automation 61 of 131

5.2. Sekar for Integrated zJOS Network

Starting at zJOS version 2.1.3, Sekar is featured with capability to establish an
integrated EMS on an integrated zJOS network environment. You don’t need
complete zJOS-XDI configuration on each z/OS host in the network, instead the
following:

• Complete copy of licensed zJOS/Sekar package on one z/OS system host
which is assigned as EMS server.

• Copy of licensed zJOS agent on each z/OS system host which is assigned
as EMS member or client.

All the above software materials must be physically installed, well setup and well
tested. Review each of them and ask vendor support to make sure everything is
ready and comply with the following states:

� zJOS address space (XDI) up with Sekar and zJOS socket server active
with well-setup parameters on EMS server machine. Make sure Sekar
parameters involve all EMS client machines.

� zJOS agent address space (XDA) which represent Sekar agent up and
active on each EMS client machine.

Figure 5.2: Sekar for integrated zJOS network

62 of 131 5. Integrated Automation

55..22..11 Preparing zJOS Server

If you have already prepared zJOS Server for Puspa, you don’t need to do it for
Sekar. Because, once it is prepared, server will ready for both Sekar and Puspa.

To implement an integrated EMS, Sekar must be prepared to accept connection
request from each zJOS agent on each z/OS host in the network which are:

1. Make sure your current zJOS-XDI is version 2.1.3 or higher.
2. Make sure zJOS agent is ready on each connected z/OS host which

designated to be a member of integrated EMS.
3. Bring up zJOS server. By default, server is initially down (figure 2.1).

You can bring it up manually each time zJOS address space is started,
or automate it later. The command is:

.SVR START

or

F XDI,SVR START

or

START request in control panel as shown in figure 5.3

Figure 5.3: Activating zJOS server

Figure 5.3a: Immediate response when start request (fig 5.3) is entered.

5. Integrated Automation 63 of 131

Figure 5.3a shows immediate response when START request for zJOS server is
entered. At the same time, control panel actually sends the request to zJOS
address space as when it is entered via .SVR or F XDI,SVR command. In the
console log, activation progress is displayed as shown in figure 5.3b.

Figure 5.3b: zJOS server activation progress as displayed in console log.

The log shows host IP and port number (7777) on which server is listening agent
connection request. Although an IP address is displayed, it does not mean that
server will only use this IP. It just shows first IP found in socket address control
block. Server will rather use all available IP addresses. By default zJOS server
uses port 7777. Unless it conflicts with your existing application, you are strongly
recommended to leave this default. To change it, you have to manually update
your current XDISYSxx member in zJOS parameters library, insert PORT=nnnn
parameter, then recycle zJOS address space.

Message DERSVR543I shows network connection control block (NETCCB) was
built to accommodate agent connection request. Each NETCCB represents one
agent connection.

Finally, when zJOS server activation has been done, you can see its status in the
control panel as shown in figure 5.4. Just hit enter key awhile after start request
was entered to obtain this information. Status information can also be displayed
on the system console by issuing .STATUS command as shown in figure 5.4a..

Figure 5.4: Status information in control panel when zJOS server active

64 of 131 5. Integrated Automation

Figure 5.4a: Status information obtained by .STATUS command when zJOS server active

Once zJOS server active, you can see which agents are currently connected by
displaying a list of generated NETCCBs. .Issue the following command:

.LIST NETCCB

or

F XDI,LIST NETCCB

or

LIST request in control panel as shown in figure 5.5.

Figure 5.5: Entering LIST request to zJOS server

Figure 5.5a: List of NETCCB in respond to LIST request to zJOS server

5. Integrated Automation 65 of 131

Figure 5.5a shows a list of agent statuses represented by NETCCBs in respond
to LIST request entered in control panel as shown in figure 5.5. Each line of the
list show agent-ID in 8-digit hexadecimal, name of system on which agent runs,
connection status (conn=Y if connected), availability of event tables (EMS=Y if
available), availability of scheduler table (SCD=Y if available) and encoding type
of agent’s host (type=E for EBCDIC or type=A for ASCII).

The same information can also be gathered in system console log by issuing
.LIST NETCCB command as shown in figure 55b. Each agent information is
displayed in message DERCMD094I that contain exactly the same as a line
prompted in control panel.

Figure 5.5c: List of NETCCB in respond to .LIST NETCCB command

55..22..22 Preparing zJOS Agent for z/OS

If you have already prepared zJOS Agent for Puspa, you don’t need to do it for
Sekar. Because, once it is prepared, agent will ready for both Sekar and Puspa.

In an integrated EMS, Sekar runs only in one z/OS host, which is designated as
EMS server. Other hosts are called as EMS member or client. Each EMS
member needs zJOS agent which runs as Sekar partner. To have agent ready
on EMS member, perform the following 2 simple steps:

1. Install copy of zJOS agent
2. Customize XDA procedure

Install copy of zJOS agent

zJOS agent for z/OS is shipped together in the same zJOS-XDI package. Once
zJOS-XDI package is installed in EMS server, all products including agent are
installed. Though, you don’t need agent on EMS server. You rather, need it for
EMS member. To install it in EMS member, you can easily put its copy onto
EMS member as follow:

1. If zJOS load library is resided in shared volume, you only need to
catalog it into EMS member and register it as an APF library in EMS
member.

2. If zJOS load library is resided in non-shared volume, you need to copy
and catalog it into EMS member and register it as an APF library in
EMS member.

66 of 131 5. Integrated Automation

Customize XDA procedure

zJOS agent for z/OS runs as XDA address space on EMS member, which is
based on XDA procedure JCL generated during zJOS-XDI installation steps.
Below is an example of XDA procedure:

//XDA PROC V=V2,LVL=12,HLQ=SYS5,SSN=XDA,
// IP=100.99.125.3,PORT=7777
//AGENT EXEC PGM=DERJXA,REGION=0M,DYNAMNBR=99,
// TIME=1440,PARM='SSN=&SSN,PORT=&PORT,IP=&IP'
//STEPLIB DD DISP=SHR,DSN=&HLQ..ZJOS&V&LVL..LINKLIB
// DD DISP=SHR,DSN=&HLQ..ZJOS&V&LVL..LPALIB
//JCLLIB DD DISP=SHR,DSN=&HLQ..ZJOS&V&LVL..SAMPJOB S

PROC card consists of 6 parameter keywords. Keyword V, LVL and HLQ are
just for JCL substitution, not mandatory to zJOS-XDI programs. You can modify
them as necessary, or eliminate them if you prefer to use fixed datasets names,
or just leave it as it is (recommended).

Keyword SSN, IP and PORT are mandatory, since their parameter values are
passed to zJOS agent programs. You can change their default value, but you
can not eliminate each of them. SSN assigns subsystem name for zJOS agent.
Default subsystem name is XDA.

IP keyword specifies EMS server host IP address. This is the most important
point of which you have to customize. This keyword must be exactly EMS server
host IP address.

PORT keyword specifies EMS server host port number which is used by zJOS
server to listen connection request. Although this is the most important point of
customization, unless you have to use another port number, you are strongly
recommended to leave its default, which is 7777. This keyword must be exactly
port number on which zJOS server listen connection requests.

Next card is EXEC card. It specifies that storage and time are unlimited. You
should not change anything in EXEC card. Just leave it as it is.

The rest are 2 DD cards for STEPLIB and JCLLIB. STEPLIB must point to load
library which contains all zJOS-XDI program modules. Since zJOS Agent for
z/OS runs as a privileged program, this load library must be registered as an APF
authorized library. Although most of zJOS-XDI modules reentrant and even
refreshable, you may not place them in LPA nor in LNKLST concatenation. Both
can result unpredictable problems. Initialization routine of zJOS agent manages
them in very unique way instead. Some modules loaded onto the dynamic LPA,
and some others onto the common segment, by means of CSA. The rest must
remain in the STEPLIB.

5. Integrated Automation 67 of 131

To avoid maintenance redundancy, since zJOS agent program modules are
placed and maintained together with all zJOS-XDI program modules in zJOS
load library, the best configuration is when STEPLIB address to shared zJOS-
XDI load library with zJOS address space in EMS server. Otherwise, you must
only maintain zJOS load library in EMS server, and you have to clone it to all
EMS member.

JCLLIB DD card is library or concatenated libraries of scheduled jobs, which is
used only by Puspa for automatic jobs scheduling. Although you do not use
Puspa in your environment, at least one dummy library must be specified to
avoid JCL error problem.

5.3. Sekar Agent for z/OS

Sekar agent for z/OS is actually zJOS Agent for z/OS, which supports both Sekar
(EMS) and Puspa (automatic scheduling). Once agent is well setup and up in a
z/OS host, this host is then eligible to EMS server as an EMS member, as well as
eligible to scheduling server as scheduler member. Refers to paragraph 5.2.2 to
install and setup zJOS Agent for z/OS.

zJOS Agent for z/OS consist of 2 categories of major components, system event
listener and socket client. System events listener mostly runs as subsystem
functions and resource managers to capture occurrence of any event including
job status events. Captured events are then posted to socket client on agent
address space (XDA) to be transferred to Sekar in EMS server machine.
Although runs as subsystem, event listener is initialized on agent address space.

Socket client runs in agent address space to interact locally with system event
listener and remotely with Sekar on EMS server. When event information is
posted by event listener via ECB, socket client forward it to Sekar in EMS server
via socket. Besides, socket client also executes instruction received from Sekar.

68 of 131 5. Integrated Automation

55..33..11 Starting and Stopping zJOS Agent

To start zJOS Agent for z/OS, issue the following command:

SUB=MSTR argument specifies that agent must run under z/OS MVS master
scheduler. This parameter is required. You must specify this argument explicitly,
exactly as it is. Otherwise, it will result unpredictable situation.

SSN= is an optional argument, to specify subsystem name for zJOS Agent for
z/OS. zJOS agent requires to run as z/OS MVS subsystem. Default subsystem
name is XDA. Use this keyword if you prefer to use different name. Valid
subsystem name must be 1 to 4 alphameric.

IP= is an optional argument, to specify EMS server IP address on which zJOS
server address space runs. The default IP address is one you have specified in
XDA procedure as explained in paragraph 5.2.2.

PORT= is an optional argument, to specify port number on which zJOS Server is
listening for connection request. The default port number is 7777.

5. Integrated Automation 69 of 131

Figure 5.6: zJOS agent startup on DYAH2003

Once the above start command issued, the following steps are then performed:

1. Initialize zJOS Agent subsystem.
2. Attach socket client program as a subtask.
3. Socket client program then does the following steps:

a. Login to zJOS server
b. Request EMS and scheduler parameters to zJOS server
c. Receive EMS and scheduler parameters from zJOS server
d. Tell zJOS Agent subsystem that socket is ready.

Figure 5.6 shows agent startup messages when started on DYAH2003 host,
where Sekar is running on MFOC host at 100.99.122.3. Shown in message
DERAGT621I there are only 3 EMS parameters were sent by zJOS server. No
scheduling parameter is available.

In respond to agent startup on DYAH2003 host, zJOS server on MFOC host
assigns a subtask named zJOS#001 as a server’s worker to be a communication
partner to agent. In common, subtask name is zJOS#nnn, where nnn is sequent
number based on its occurrence.

As shown in figure 5.7, when login request accepted, server then change subtask
name zJOS#001 to DYAH2003 which represent host name on which agent is
running, and assign agent ID 022E9730 as shown in figure 5.6.

Next step, server receives request from agent to provide EMS and scheduling
parameters associated with DYAH2003 host. In this case/example, server sent
EMS parameters only, since scheduling (Puspa) is not activated yet.

70 of 131 5. Integrated Automation

Figure 5.7: zJOS server accepting agent connection request from DYAH2003

Once agent up, you do not actually need to stop it unless you want to perform
maintenance tasks or because of regular IPL schedule.

To terminate zJOS agent address space (XDA), issue the following command:

-STOP

Although XDA address space down, XDA subsystem will still remain in memory
with status active held. Hence to bring it back up, you can just issue the following
command:

-START

55..33..22 Connecting and Disconnecting Agent

As explained in the previous paragraph, once agent is started, it automatically
tries to connect to zJOS server. When zJOS server is already up and host on
which agent is running is already connected to the TCP/IP network in which
zJOS server is connected, as long as IP address and port number are correctly
specified in XDA procedure or arguments of START command, you should found
agent automatically connected. If not, you should check and make sure all the
above stuffs are complied, and then issue the following command:

-CONNECT

To connect agent to other than specified server IP and port in XDA procedure,
issue the following command:

-CONNECT IP=xxx.xxx.xxx.xxx PORT=nnnn

5. Integrated Automation 71 of 131

Once issued, zJOS Agent remembers the recently used IP and/or port, and
become default for next CONNECT command issuance.

To stop agent interaction activities, issue the following command:

-DISCONNECT

This will cause socket client subtask logoff from server and terminate connection.
Agent remains up. In case there is a networking problem, for example if TCP/IP
stack unexpectedly down, DISCONNECT request will not be responded
correctly, you have to use DROP to force detach socket client subtask as follow:

-DROP

Take a note that DROP is for emergency only. It just issue DETACH to detach
socket client subtask, to give you a chance to shutdown the agent normally.
Without dropping the socket, agent will not be able to shutdown normally.

You should not issue DROP to do normal disconnection. Once DROP is issued,
you should not issue CONNECT to reconnect to server. No guarantee that
stable interaction activities will be achieved. To have better reconnection, you
should issue STOP then START to recycle agent address space.

55..33..33 Controlling zJOS Agent

Display current status information

To get agent status information, issue the following command:

-STATUS

Then agent current status is displayed as shown in figure 5.8. Agent identifier,
subsystem name and worker (work partner) name are displayed as well as
server IP address and port number. Current interaction status with and number
of received parameters from Sekar and Puspa are also displayed.

Figure 5.8: Example of agent status information

72 of 131 5. Integrated Automation

Display list of parameters received from server

There are 2 types of parameters which received from zJOS server, EMS and
scheduler parameters. Each EMS parameter is represented by event parameter
control block (EVB). Issue the following command to display all EVBs:

-LIST EMS or -LIST EVB

XDA then display response as shown in figure 5.9.

Figure 5.9: Agent on DYAH2003 responding agent (itself) command

Each scheduling parameter is represented by end-of-task block (EOT). Issue the
following command to display all EOTs:

-LIST SCD or -LIST EOT

Requesting EMS parameters

When agent is started, connection to server normally establish automatically.
Then server will also automatically send portion of EMS parameters designated
to this agent, when one ready by the time. Else, zJOS server will send later as
soon as one ready.

In case server got missed, you can ask server to send EMS parameter to this
agent by issuing the following command:

-GET EMS

Agent then reissue request to the server.

55..33..44 Remote Command

When an integrated EMS is established on your integrated zJOS network
environment, by means zJOS/Sekar, you then can pass any command from EMS
server to any connected EMS client. This facility called remote command facility.
To issue remote command, use the following syntax:

RCMD hostname command_text

5. Integrated Automation 73 of 131

or

RC hostname command_text

Where:
Hostname must be a valid EMS member host name
Command_text is a string containing command verb and its arguments.

Figure 5.10: Issuing remote command to DYAH2003 from EMS server

Figure 5.10 shows RC DYAH2003 -STATUS and RC DYAH2003 D A,L are
issued on EMS server console. Both command texts are then sent to DYAH2003
site for execution. On DYAH2003 site you got respond as shown in figure 5.11.

Figure 5.11: Agent on DYAH2003 responding remote command from MFOC (server)

Remote command is actually one of basic functions in integrated EMS feature of
zJOS/Sekar. This function is used by Sekar to perform actions in EMS member.
Hence, remote command is useful indicator to verify whether you have setup an
integrated EMS correctly.

74 of 131 5. Integrated Automation

55..33..55 Remote Job Submission

Remote job submission is another EMS facility which is actually a special form of
remote command to ask agent to submit a job. To issue remote command, use
the following syntax:

RJOB hostname jobname

Where:
Hostname must be valid EMS member host name
Jobname is a string containing jobname. Jobname must be a member
name of job JCL library pointed by JCLLIB in XDA procedure.

5.4. The Goal of Integrated Automation

Combined remote command and remote event capturing capabilities of Sekar
and agent is the main idea to establish an integrated EMS on networked-z/OS.
Integrated EMS is an establishment of EMS on networked systems which appear
as a single system.

Figure 5.12: Integrated EMS on networked-z/OS

5. Integrated Automation 75 of 131

As discussed in chapter 3, you can specify system name in event entry, whereas
in each associated action entry, you can specify the same or different system
name. This means, event might occur in any host on the network and each
associated action might also be performed in any host on the network. For
example, in networked of 3 systems, SYS1, SYS2 and SYS3, event in system
SYS1 can be responded with action in either system SYS1, SYS2 or SYS3.
Event in system SYS2 and SYS3 can also be responded with action in either
system SYS1, SYS2 or SYS3. Hence, system SYS1, SYS2 and SYS3 appear
as a single system. Figure 5.12 illustrates how Sekar manages event in
networked system SYS1 and SYS2.

To get clearer understanding on integrated EMS, the following example is a good
illustration. Figure 5.13 shows action table for CSMF command. CSMF is not a
valid command in standard z/OS environment. In this example, if CSMF is issued
as a command on MFOC host, Sekar then accepts it and issue command
START SMFCLEAR locally on MFOC host and remotely on DYAH2003 host.

Figure 5.13: Defining a local command with local and remote actions

Figure 5.14 shows another example, an action table for DSMF command type
event on remote system DYAH2003. Table consist of 2 action entries, D SMF
command targeted for system MFOC and D SMF command targeted for system
DYAH2003.

76 of 131 5. Integrated Automation

Figure 5.14: Defining a remote command with local and remote actions

Effect of the above example is shown in figure 5.15 and 5.16. When DSMF
command is issued on DYAH2003 console, then appear D SMF response on
DYAH2003 console as shown in figure 5.15 and on MFOC console as shown in
figure 5.16.

Figure 5.15: DSMF command response on DYAH2003 (EMS member)

Figure 5.16: zJOS-XDI server responding DSMF command issued on DYAH2003

Internally, when DSMF command is issued on DYAH2003, agent then captures it
and sends it to server. Sekar then looks up event table to evaluate whether
DSMF is a valid command for DYAH2003. Upon completion, Sekar then execute
2 entries of associated action table. According to the action table as shown in
figure 5.14, Sekar then perform remote command D SMF on system DYAH2003
and execute D SMF on local system.

6. Implementing Your Innovation 77 of 131

Chapter 6 Implementing Your
Innovation with Sekar

With Sekar, you can implement you innovation in how to manage your system
simpler. Automation is the basic result of EMS, which is main function of Sekar.
Besides, Sekar encourage you to find out your best innovative idea to make up
your system more friendly, which can increase its productivity. IBM have given
example in JES2, that we can issue $DSPOOL as alternative of $D SPOOL
command which need longer time to type. We can issue 2D reply as short way
of R 2,D reply command. IBM have even provided short form and acronym for
most of console, JES and TSO commands as well as ISPF short-path in menu
selection with x.y.z and =x option forms. These describes how important
encouragement to increase the productivities.

Let assume all given shot forms, short way and shot path in the above examples
are already standard feature. Sekar do more for you. You can implement your
innovation using the following 2 opportunities:

� CMD type event and its associated actions
� Rule type action for any event type.

6.1. Innovation with Command

In Sekar EMS mechanism, command is anything invoked on console, regardless
its validity according to standard system commands. As long as action table is
provided (by you), any string associated with it will become a valid command. For
example, DPROG initially is not a valid command. When you issue DPROG in
console, system respond with message IEE305I as shown in figure 4.1.

Figure 6.1: DPROG command and its response at initial time.

Though, you can make DPROG as a valid command by defining it in event table.
In this example, DPROG is defined as a command type event as shown in figure
6.2.

78 of 131 6. Implementing Your Innovation

Figure 6.2: Defining DPROG command in event table

This tells Sekar that DPROG is valid event from 5:10 to 17:00 everyday including
holiday since January 1, 2007 up to December 31, 2007. Next is associating
action table containing D PROG,APF and D PROG,LNK commands as shown in
figure 6.3 to DPROG command event.

Figure 6.3: Defining action table associated to DPROG command event

This means that, when DPROG command is issued during valid timeframe,
Sekar then take it and respond it with issuing D PROG,APF and D PROG,LNK.
After RELOADed, newly defined DPROG then effective. Figure 6.4 shows
although within valid date range, DPROG still invalid when issued before 5:10 or
after 17:00.

6. Implementing Your Innovation 79 of 131

Figure 6.4: DPROG command still invalid when issued outside timeframe

If DPROG is issued within valid timeframe, as shown in figure 6.5, Sekar then
issue D PROG,APF followed with D PROG,LNK. Hence, you can feel that you
have made your own command DPROG to display current content of APF and
LNKLST tables.

Figure 6.5: DPROG command results execution of D PROG,APF and D PROG,LNK

6.2. Standard XDI Rule

Standard XDI rule for Sekar is actually a rexx program. When command and/or
reply action types are felt not enough to handle your specific case, you might
need to write rule. Rule is executed as just an ordinary rexx program on TSO
batch environment. As it is a rexx program, rule capability will be limited at rexx
capabilities. To have more capable rule, you have to write privileged program
instead of just rexx program, which will be discussed in next paragraph.

Rule will only receive associated event information. Neither XDI nor Sekar
internal information is passed to your rule. Event information is passed by Sekar
to your rule in style of command argument:

RULENAME sysname event_information_text

Where:

80 of 131 6. Implementing Your Innovation

1. RULENAME is name of your rule, which is a name of member of rule
library, left justified and padded with blanks.

2. Sysname is 1-to-8 byte name of system on which event occurred.
3. Event_information_text is a text string explaining the event. The

content of the string depends on the type of event:
a. MSG: Complete message text. For WTOR message, reply id is

placed in front of message text.
b. CMD: Complete command text
c. TOD: None
d. EOJ: Name of ended job
e. EOS: Name of job followed with name of ended job step.

Rule will run on XDIRULE address space which is TSO batch started by Sekar
from XDI address space. The following JCL is given standard rule procedure.
You can customize it as necessary.

//XDIRULE PROC M=,ARG=,V=V2,LVL=12,HLQ=SYS5
//XDITSO EXEC PGM=IKJEFT01,DYNAMNBR=20,REGION=0M,
// PARM='%&M &ARG'
//STEPLIB DD DISP=SHR,DSN=&HLQ..ZJOS&V&LVL..LOADLIB
//SYSEXEC DD DISP=SHR,DSN=&HLQ..ZJOS&V&LVL..RULELIB
//SYSTSIN DD DUMMY
//SYSTSPRT DD SYSOUT=A
//SYSPRINT DD SYSOUT=A

When associated event occurs, Sekar start XDIRULE with the following console
command:

S XDIRULE,M=rulename ,ARG=’sysname event_information_text’

As describe in the above rule procedure JCL, rulename must be a member name
of RULELIB dataset which is accessed as SYSEXEC file.

Rule does not really need zJOS-XDI program modules, since most of modules
not applicable for user program. The only module that might be needed by rule
is DERCCM, a small privileged routine to pass command to console, with the
following syntax:

DERCCM command_text

For example, to issue D A,L command to console from your rule/rexx program,
use the command DERCCM d a,l. Hence, zJOS-XDI load library has to be
accessed as STEPLIB file in XDIRULE procedure.

6. Implementing Your Innovation 81 of 131

66..22..11 Example

The following rexx script is a simple example of rule named WTORRULE to reply
“Y” to specific WTOR message with id SDDWTOR*.

arg msgtxt
address TSO
txt = "'" || msgtxt || "'"
'SEND' txt 'USER(IBMUSER)'
sysnm = word(msgtxt,1)
rplid = word(msgtxt,2)
msgtxt = subword(msgtxt,3)
rpltxt = "R " || rplid || ",Y"
"DERCCM" rpltxt
exit

Rule receives whole argument text as an ordinary rex argument. The first word
of text is system name, the second word is reply id and the rest is message text.
This rule performs 2 actions.

1. Send whole argument text to TSO userid IBMUSER as a TSO
message.

2. Reply to SDDWTOR* message with reply text “Y” and reply id parsed
from 2nd word of argument text.

To install WTORULE rule:

1. WTORRULE must be placed as a member in RULELIB or any dataset
referred as SYSEXEC file in XDIRULE procedure. Member name
must be WTORRULE

2. WTORRULE must be registered as rule action for SDDWTOR*
message event as shown in figure 6.6.

Figure 6.6: WTORRULE in action table of SDDWTOR* event

82 of 131 6. Implementing Your Innovation

Upon effective, WTORRULE runs every time message prefixed with SDDWTOR*
occurs. When message “04 SDDWTOR(SYS1): Ini hanya ujicoba “ as
shown in figure 6.7, WTORRULE is then active and issue “R 04,Y” reply as its 2nd
action.

Figure 6.7: WTORRULE action shown in syslog

Its first action is TSO message in IBMUSER terminal, as shown in figure 6.8.
whole event information is displayed.

Figure 6.8: Effect of WTORRULE action in IBMUSER terminal

6.3. Innovation with Rule

As discussed in 6.2 above, the most important thing you should understand is
that the way Sekar execute a rule is by issuing START command:

S XDIRULE,M=rulename ,ARG=’sysname event_information_text’

This command is the only correlation between Sekar and rule. Hence, XDIRULE
procedure is not necessarily as the above given procedure. The rule is also not
necessarily a rexx program. So, you can change XDIRULE procedure to your
own. You can also write non-rexx program for your rule. As long as can be
triggered by the above command, it will become a valid rule for Sekar. The only
thing you should care is that XDIRULE procedure must be applicable for any rule
name. Program which is called in EXEC card of XDIRULE must capable to call
rule pointed by M=rulename keyword as describe in figure 6.9.

6. Implementing Your Innovation 83 of 131

Figure 6.9: Rule processing logic flow

In given standard XDIRULE procedure, rule selection is done internally by TSO
program IKJEFT01. By placing rulename and event information text in PARM=
keyword, TSO assumes as a command text and executes it immediately after
initialization complete. If you replace IKJEFT01 with your own program, rule
selection then becomes your responsibility.

66..33..11 Rule Programming

A rule is actually can either be a rexx exec or program module. This gives you a
chance to enhance EMS functionalities and application in your specific system
environment. For simpler cases, rule can be written in either TSO standard
Rexx language or any other application programming language, such as Cobol,

84 of 131 6. Implementing Your Innovation

PL/1, C++, Pascal, Fortran and so forth. For more complex cases, which need
internal information, you are recommended to use assembly instead. At this
moment, discussion scope is limited only surrounding rule programming without
modifying XDIRULE procedure, which means you still use TSO to find and
execute your rule. The only thing you should care is search order and passing
event information.

Figure 6.10: Rule rexx exec and programs

Rule search order

Since rule is executed as a command on TSO environment, rule is searched by
TSO in standard TSO search order. Program module is searched prior to rexx
and clist exec. Hence if your rule is rexx and there is a program module with the
same name in STEPLIB file, LPA/ELPA or LNKLST concatenation, it will always
be executed, instead of your rule, and may yields unpredictable problem.

6. Implementing Your Innovation 85 of 131

In given XDIRULE procedure, however, rulename is invoked via PARM= keyword
in EXEC card, which is specified as PARM=’%&M &ARG’. The percent sign (%)
is to limit TSO search scope only for around SYSEXEC and SYSPROC files. For
example, if your rulename is MYRULE, JCL substitution for %&M variable results
%MYRULE. TSO then search SYSEXEC and SYSPROC files only to find
member named MYRULE. If your rule is a program module, which certainly not
in SYSEXEC nor SYSPROC files, XDIRULE is then failed. Hence, % prefix as
in given XDIRULE procedure, valid only if all rules are rexx or clist execs. You
are even recommended to use percent (%) prefix to avoid your rexx exec rule
being overridden by program module with the same name.

If your rule is a program module, unless required to be in LPA/ELPA or LNKLST,
strongly recommended to be placed in first concatenated dataset in STEPLIB file.
This to make sure your rule is in first search order. Percent (%) prefix sign must
not be used in PARM= keyword in EXEC card in XDIRULE procedure. You must
change it to PARM=’&M &ARG’ instead.

Passing event information to rule

Main and the most important input for a Sekar rule is a complete information
regarding event. Except for TOD event, complete event information text consist
of name of system on which event was occurred and detail of event information.
For TOD event, since TOD is very common information which can be taken from
anywhere including in rule routine itself, hence not necessarily to be passed, so
you can ignore it.

Complete event information text is passed by IKJEFT01 to your rule as a single
string in command argument style. In rexx program, you can easily take it with
arg instruction as follow:

arg complete_text
parse var complete_text sysname event_info_text

or

arg sysname event_info_text

In such style, internally argument is assumed as a single string and pointed by
register 1, with the following structure:

INFO_AREA DSECT
INFO_LENGTH DC AL2(length)
INFO_TEXT DC C’complete event info text’

Complete event info placed in INFO_TEXT area, and its length in INFO_LENGTH
field. Text is unformatted, so you have to parse to find system name, reply id (for

86 of 131 6. Implementing Your Innovation

WTOR) and other major information. System name is the first string-word within
INFO_TEXT area. In assembly you can parse system name as follow:

 Using INFO_AREA,R1
 xr R15,R15
 icm R15,b’0011’,INFO_LENGTH
 la R2,sysname
 la R3,l’sysname
 mvi sysname,c’ ‘
 mvc sysname+1(l’sysname-1),sysname
 la R4, INFO_TEXT
Loop_sysn equ *
 cli 0(R4),c’ ‘
 be Got_sysn
 mvc 0(1,R2),0(R4)
 la R2,1(R2)
 la R4,1(R4)
 bctr R15,0
 bct R3,Loop_sysn
Got_sysn equ *

If you are using compiler type language, to get and parse event information is not
as easy as in rexx or assembly. It depends on which language you are using,
and whether command style argument is supported. You must follow the product
manual document. If command style argument is not supported, you can use
either rexx or assembly as an interface prior to your program. In assembly you
can easily manipulate command style argument to conventional program call
parameters to be passed to your rule program. But, if you prefer to use rexx, you
can use one of following facilities to pass argument as conventional program call
parameters to your rule program:

Address LINKMVS ‘yourpgm parm 1 parm 2 parm 3’

or

Address LINKPGM ‘yourpgm parm 1 parm 2 parm 3’

Use Address LINKMVS if you want to pass both string length and string data to
your rule. Otherwise, use Address LINKPGM , and only string data is passed to
your rule. Both ways will bring your rule at the same TCB level with the interface.
If you want your rule run in different TCB level, use Address ATTACHMVS or
Address ATTACHMVS instead. Your rule then runs as subtask or child process.

Further about rexx can be in IBM manuals z/OS MVS TSO/E Rexx User’s Guide
(SA22-7791) and z/OS MVS TSO/E Rexx Reference (SA22-7790).

6. Implementing Your Innovation 87 of 131

66..33..22 Creating Your Own XDIRULE

Creating your own XDIRULE means replacing IKJEFT01 with your own program.
Here you are assumed as advanced users, who have in-depth skill in z/OS MVS
systems programming environment. In-depth skill in zJOS/Sekar does not really
matter since handshaking between Sekar and XDIRULE is nothing more than
just a start command string of:

S XDIRULE,M=rulename ,ARG=’sysname event_information_text’

In this case, Sekar is just a medium to enable certain event to trigger XDIRULE.
While triggering XDIRULE, Sekar informs name of rule and event information to
XDIRULE via START command arguments. Once XDIRULE task is started, it
becomes an independent task on z/OS system, which can do anything.

By creating your own XDIRULE procedure, you can even use rulename just as
input information instead of a member name. Since given rulename in START
command string was selected based on type of captured event which has been
validated against specified timeframe in your event table, rulename can also be
used as such switch control information for your specific processing.

However, the important thing you must seriously care, once you enable your own
XDIRULE procedure, all existing rules will no longer applicable. If you want them
remain applicable, you have to adopt logic mechanism of IKJEFT01 in your new
program.

6.4. zJOS Supported Rexx Functions

zJOS provides some rexx functions to support rule programming. These are:

i. zjaxfer()
ii. zjcal()
iii. zjcmd() or xcommand()
iv. zjevent()
v. zjholday()
vi. zjpuspa()
vii. zjsekar()
viii. zjserver()
ix. zjset()
x. zjstate()
xi. zjwait()
xii. zjwto()
xiii. zjwtor()

88 of 131 6. Implementing Your Innovation

66..44..11 zjaxfer()

zjaxfer() is a rexx function to obtain state information of XDI/AutoXfer. As it is a
privileged function, it needs authorization from zJOS. Your local security setting
won’t be able to detect its internal process.

Syntax:

var = zjaxfer ()

Where:

1. var is variable name to contain function result:
a. State information followed with destination table id. Possible states

are:
i. ACTIVE 00

1. AutoXfer is currently active with destination table 00
(member XDITAB00)

ii. INACTIVE 05
1. AutoXfer is currently inactive and destination table 05

(member XDITAB05) is addressed to be used when
activated

b. ‘NOTHING’ � zJOS subsystem does not exist.
c. ‘UNAUTHORIZED nnn’ � command was not granted

i. nnn is zJOS authorization exception code

Example:

To obtain current state of AutoXfer, you can write it in rexx as follow:

x = zjaxfer()
axfrstate = word(x,1)
axfrtable = word(x,2)

66..44..22 zjcal()

zjcal() is a rexx function to confirm or obtain special calendar information. As it is
a privileged function, it needs authorization from zJOS. Information is based on
combined current system calendar and user specified holiday table.

Syntax:

var = zjcal (‘calcode’)

or

6. Implementing Your Innovation 89 of 131

var = zjcal ()

Where:

1. Argument ‘calcode’ is text of special calendar code. If calendar

code match with current calendar, the function returns ‘Y’. Otherwise it
returns ‘N’. Supplied calendar codes are:
• HOLI for holiday
• IDAO for initial working day after off
• IWWD for initial week working day
• IMWD for initial month working day
• FWWD for final week working day
• FMWD for final month working day
• EMON for end of month day
• OFFD for off day (holiday, Saturday or Sunday)

2. If no argument specified, function returns a string text contains list of
current calendar codes.

Example:

The following example is rexx routine to display special calendar currently
in effect:
Select
 When zjcal(’IDAO’) = ’Y’ then,
 Say “Today is initial working day after off ”
 When zjcal(’IWWD’) = ’Y’ then,
 Say “Today is initial week working day”
 When zjcal(’IMWD’) = ’Y’ then,
 Say “Today is initial month working day”
 When zjcal(’FWWD’) = ’Y’ then,
 Say “Today is final week working day”
 When zjcal(’FMWD’) = ’Y’ then,
 Say “Today is final month working day”
 When zjcal(’EMON’) = ’Y’ then,
 Say “Today is end of month day”
 When zjcal(’OFFD’) = ’Y’ then,
 Say “Today is off day”
 Otherwise NOP
End

90 of 131 6. Implementing Your Innovation

66..44..33 zjcmd() or xcommand()

zjcmd() is a rexx function to pass command text to console. As it is a privileged
function, it needs authorization from zJOS. Nevertheless, the use of zjcmd() also
depend on your local security setting.

Syntax:

var = zjcmd (‘command_text’)

or

var = zjcmd (cmdvar)

Where:

1. ‘command_text’ is text of command string, which must be enclosed

with either single or double quote.

2. cmdvar is variable name to contain text of command string.

3. var is variable name to contain function result. Possible results are:

a. ‘ISSUED’ � command was issued
b. ‘UNAUTHORIZED nnn’ � command was not granted

nnn is zJOS authorization exception code

Example:

To issue MVS command D PROG,APF, you can write it in rexx as follow:

x = zjcmd(‘D PROG,APF’)

Alternatively, you can use variable as follow:

cmd = “D PROG,APF”
x = zjcmd(cmd)
if x = ’ISSUED’ then ...
else ...

6. Implementing Your Innovation 91 of 131

66..44..44 zjevent()

When you want to handle an event very specifically or just for trial prior to set it
up permanently in Sekar EMS table, you may do it in rexx program with your own
logic. zjevent() is a rexx function to request Sekar for notification when a certain
event as specified in arguments occurs, or when any event previously requested
by using zjset() function occurs, and optionally perform an immediate simple
action. When issued, zjevent() function may entering wait state condition to
listen notification from Sekar regarding occurrence of previously selected event.

When issued with arguments, zjevent() only listens an event as specified in the
arguments and perform a simple action if one specified in argument. Function is
immediately woken up and terminated when the event occurs. Actually when
notified by Sekar that the expected event occurs. To wait next similar event, you
must iterate it. By using zjevent() function with arguments, your rexx program
can only listen a single event at a time.

When issued without argument, zjevent() listens all previously requested events
by using zjset() function. Hence, zjevent() without argument must be preceded
by zjset() function. This gives you chance to your rexx program to listen multiple
events at a time. When one of expected events occurs, zjevent()is immediately
woken up and terminated. To continue wait for next event, either similar or other
event, you must iterate it. As zjset() function does not support immediate action,
no action is perform when zjevent() function without argument is woken up. All
action must be handle in your rexx program by using zjcmd() function.

As it is a privileged function, zjevent() needs authorization from zJOS subsystem.
Nevertheless, the use of zjevent() also depend on your local security setting.

Syntax:

var = zjevent (‘evtype’,’evtext’,[’SUPPRESS’],’action’)

or

var = zjevent (evtypevar,evtextvar,optvar,actionvar)

or

var = zjevent () /* without argument */

Where:

1. Arguments:

92 of 131 6. Implementing Your Innovation

a. ‘evtype’ (expression) or evtypevar (variable) is type of event in
3-character abbreviation, which MSG for message event, CMD for
command event, EOJ for end-of-job event or EOS for end-of-step
event.

b. ‘evtext’ (expression) or evtextvar (variable) is text or string
represents part of the source of event information you want to
capture or trap.

c. ‘SUPPRESS’ (expression) or optvar (variable) is suppression
option for MSG or CMD event only. If optvar (variable) is used, it
must contain ‘SUPPRESS’ or nulls or blanks.

i. SUPPRESS for MSG event causes message to be
suppressed. Hence messages no longer eligible for
subsequent trapping for either zjevent() invocations or EMS
table entries.

ii. SUPPRESS for CMD event causes command to be
suppressed and not executed. Hence command no longer
eligible for subsequent trapping for either zjevent()
invocations or EMS table entries.

d. ‘action’ (expression) or actionvar (variable) is text to express
a simple action you want to perform. There are 3 possible simple
actions:

i. ‘MSG=messagetext’
ii. ‘CMD=commandtext’
iii. ‘REPLY=replytext’

2. var is variable name to contain function result, which depend on event

type:
a. For MSG event from WTO message, var contains:

‘MSG message text’
b. For MSG event from WTOR message, var contains:

‘MSG (REPLYID=nn) message text’
c. For CMD event, var contains:

‘CMD command text’
d. For EOJ event, var contains:

‘EOJ JOB=jobname SCC=nnn MAXCC=nnn ’
e. For EOS event, var contains:

‘EOS JOB=jobname STEP=stepname SCC=nnn UCC=nnn’
f. If one or more arguments were invalid or missing, var contains:

‘ERROR_ARGUMENT’
g. If command was not granted, var contains:

‘UNAUTHORIZED nnn’
nnn is zJOS authorization exception code

Example:

6. Implementing Your Innovation 93 of 131

To capture command D APF and change it to D PROG,APF, you can write
it in rexx as follow:

X = zjevent(‘CMD’,‘D APF’,’SUPPRESS’,
 ’CMD=d prog,apf’)

Alternatively, you can use variable as follow:

cmd = ”D APF”
xcmd = “CMD=D PROG,APF”
x = zjevent(’cmd’,cmd,’SUPPRESS’,xcmd)
if x = cmd then ...
else ...

With option SUPPRESS, D APF command will appear as a valid command
and result as if you issue D PROG,APF command.

Notes:

1. When a CMD or MSG event occurs, zjevent() is notified prior to EMS
table. Therefore, you must care of suppression option of zjevent()
function. If event is suppressed, event is no longer eligible for either
subsequent zjevent() or EMS table entries.

2. Once zjevent() got missed, it will remain stay in wait state until similar
event occurs. Unless very urgent situation, you should not cancel it.
Doing so, causes an orphaned EVB control block and will remain in
ECSA until next IPL.

66..44..55 zjholday()

zjholday() is a rexx function to obtain holiday information during current month.
As it is a privileged function, it needs authorization from zJOS. Information is
based on combined current system calendar and user specified holiday table.

Syntax:

var = zjholday (holiarg)

Where:

Holiarg is a text string contains valid holiday argument:

• ‘NEXT’ – to return number of days to reach the nearest holiday
from today within this month. Zero is returned if nothing is
found.

94 of 131 6. Implementing Your Innovation

• ‘DAY’ – to return week day name (e.g. Sunday, Monday etc.) of
the nearest holiday from today within this month. Null is
returned if nothing is found.

• ‘WDAY’ – to return 0 to 6 week day number (e.g. 0 for Sunday, 1
for Monday etc.) of the nearest holiday from today within this
month. Null is returned if nothing is found.

• ‘DESC’ – to return the holiday description of the nearest holiday
from today within this month. Null is returned if nothing is
found.

• ‘FINAL’ – to return number of days to reach the last holiday this
month. Zero is returned if nothing is found.

• ‘FDAY’ – to return week day name (e.g. Sunday, Monday etc.) of
the last holiday this month. Null is returned if nothing is
found.

• ‘FWDAY’ – to return 0 to 6 week day number (e.g. 0 for Sunday, 6
for Saturday etc.) of the last holiday this month. Null is
returned if nothing is found.

• ‘FDESC’ – to return the holiday description of the last holiday this
month. Null is returned if nothing is found.

Example:

The following example is rexx routine to alert operation team:

x = zjholday(‘next’)
If x <> 0 then,
 Say “Please be prepared” zjholday(‘desc’),
 “is coming in” x “days.”

66..44..66 zjpuspa()

zjpuspa() is a rexx function to obtain state information of zJOS/Puspa. As it is a
privileged function, it needs authorization from zJOS. Your local security setting
won’t be able to detect its internal process.

Syntax:

var = zjpuspa ()

Where:

var is variable name to contain function result:

6. Implementing Your Innovation 95 of 131

a. State information followed with schedule table id. Possible Puspa
states are:

i. READY 00
Puspa is currently ready for work with schedule table
00. All internal agents up, but schedule is not being
processed yet.

ii. ACTIVE 00
Puspa is currently active and schedule table 00 is
being processed.

iii. INACTIVE 05
Puspa is currently inactive and schedule table 05 is
addressed to be used when activated. All or some
internal agents down.

iv. PASSIVE 05
Puspa is currently passive and schedule table 05 was
processed and is still addressed to be used for next
process. All internal agents up, schedule was
processed, but is not refreshed yet for next process.

b. ‘NOTHING’ � zJOS subsystem does not exist.
c. ‘UNAUTHORIZED nnn’ � command was not granted

v. nnn is zJOS authorization exception code

Example:

To obtain current state of Puspa, you can write it in rexx as follow:

x = zjpuspa()
scdstate = word(x,1)
scdtable = word(x,2)
select
 when scdstate = ‘ACTIVE’ then ...
 when scdstate = ‘INACTIVE’ then ...
 when scdstate = ‘PASSIVE’ then ...
 otherwise ...
end

66..44..77 zjsekar()

zjsekar() is a rexx function to obtain state information of zJOS/Sekar (EMS). As
it is a privileged function, it needs authorization from zJOS. Your local security
setting won’t be able to detect its internal process.

Syntax:

var = zjsekar ()

96 of 131 6. Implementing Your Innovation

Where:

var is variable name to contain function result:

a. State information followed with EMS table id. Possible Sekar states
are:

i. ACTIVE 00
Sekar is currently active with EMS table 00 (member
XDIEMS00)

ii. ACT(MCS) 00
Sekar is currently active using MCS with EMS table
00 (member XDIEMS00). This is a legacy feature
from 2.1.2.

iii. INACTIVE 05
Sekar is currently inactive and EMS table 05 (member
XDIEMS05) is addressed to be used when activated

vi. ONHOLD 05
Sekar is currently inactive while zJOS subsystem is
being held (may be zJOS address space down).
EMS table 05 (member XDIEMS05) is addressed to
be used when activated

b. ‘NOTHING’ � zJOS subsystem does not exist.
c. ‘UNAUTHORIZED nnn’ � command was not granted

vii. nnn is zJOS authorization exception code

Example:

To obtain current state of Sekar, you can write it in rexx as follow:

x = zjsekar()
emsstate = word(x,1)
emstable = word(x,2)
select
 when emsstate = ‘ACTIVE’ then ...
 when emsstate = ‘INACTIVE’ then ...
 when emsstate = ‘PASSIVE’ then ...
 otherwise ...
end

66..44..88 zjserver()

zjserver() is a rexx function to obtain state information of zJOS Server. As it is a
privileged function, it needs authorization from zJOS. Your local security setting
won’t be able to detect its internal process.

6. Implementing Your Innovation 97 of 131

Syntax:

var = zjserver ()

Where:

var is variable name to contain function result:
a. State information. Possible states are:

i. ACTIVE
ii. INACTIVE

b. ‘NOTHING’ � zJOS subsystem does not exist.
c. ‘UNAUTHORIZED nnn’ � command was not granted

viii. nnn is zJOS authorization exception code

Example:

To obtain current state of AutoXfer, you can write it in rexx as follow:

svrstate = zjserver()
if svrstate = ‘ACTIVE’ then ...
else ...

66..44..99 zjset()

zjset() is a rexx function to request Sekar for notification when a certain event as
specified in its arguments occurs. Unlike zjevent(), once request is confirmed by
Sekar, zjset() is not entering to wait state until notified by Sekar. Rather, zjset()
immediately finish and return to your rexx program when request is confirmed.
You are responsible to handle the notification from Sekar by issuing zjevent()
function without argument.

Such mechanism gives chance to your rexx program to handle multiple events or
multiple types of events at a time. You may issue several zjset() for all expected
events, then followed by iterated zjevent() without argument as in the following
example:

req1 = zjset(‘MSG’,’$HASP492’)
req2 = zjset(‘MSG’,’IST020I’)
req3 = zjset(‘CMD’,‘P’,‘SUPPRESS’)
Do forever
 event = zjevent()
 evtype = strip(word(event,1))
 Select
 When evtype = ‘MSG’ then,
 Do
 msgid = strip(word(event,2))
 Select
 When msgid = ‘$HASP492’ then,

98 of 131 6. Implementing Your Innovation

 Do
 action1 = zjcmd(‘START VTAM’)
 action2 = zjcmd(‘START SDSF’)
 End
 When msgid = ‘IST020I’ then,
 Do
 action1 = zjcmd(‘START TSO’)
 action2 = zjcmd(‘START CICSPRO D’)
 End
 Otherwise NOP
 End
 End
 When evtype = ‘CMD’ then,
 Do
 cmdverb = strip(word(event,2))
 cmdtarg = strip(word(event,3))
 If cmdverb = ‘P’ then,
 If cmdtarg = ‘VTAM’ then,
 action3 = zjcmd(‘Z NET,QUICK’)
 Else,
 action3 = zjcmd(‘STOP ’ || cmdtar g)
 End
 Otherwise NOP
End

The above example shows you how rexx program can handle $HASP392 and
IST020I messages and STOP command. When $HASP392 message occurs,
this indicates JES2 initialization complete, then start VTAM and SDSF. When
IST020I message occurs, this indicates VTAM initialization complete, then start
TSO and CICSPROD. Such idea is very common in EMS.

One thing you should keep in mind is the way this example handle P command.
P is a short form of STOP command verb. When P command issuance occurs,
suppress it to avoid execution. Then, check the command argument, which is a
name of workload or job to be brought down. If the targeted job is VTAM, then
issue Z NET,QUICK. Else, issue STOP for the same target. This will affect as if
P command applicable for VTAM, which is actually not. Although STOP and P
are actually executed by the same processor, STOP verb won’t be trapped since
Sekar only evaluate the command text.

Combined zjset() and zjevent() functions is the main design of zJOS rexx support
for Sekar. Most of EMS mechanism you have implemented in Sekar EMS table
can be handled by a single rexx program which fully follows your idea, except for
remote events. Currently, zJOS rexx functions package does not support remote
event exchange.

As it is a privileged function, it needs authorization from zJOS. Nevertheless, the
use of zjset() also depend on your local security setting.

Syntax:

6. Implementing Your Innovation 99 of 131

var = zjset (‘evtype’,’evtext’,[’SUPPRESS’])

or

var = zjset (evtypevar,evtextvar,optvar)

Where:

1. Arguments:

a. ‘evtype’ (expression) or evtypevar (variable) is type of event in
3-character abbreviation, which MSG for message event, CMD for
command event, EOJ for end-of-job event or EOS for end-of-step
event.

b. ‘evtext’ (expression) or evtextvar (variable) is text or string
represents part of the source of event information you want to
capture or trap.

c. ‘SUPPRESS’ (expression) or optvar (variable) is suppression
option for MSG or CMD event only. If optvar (variable) is used, it
must contain ‘SUPPRESS’ or nulls or blanks.

i. SUPPRESS for MSG event causes message to be
suppressed. Hence messages no longer eligible for
subsequent trapping.

ii. SUPPRESS for CMD event causes command to be
suppressed and not executed. Hence command no longer
eligible for subsequent trapping.

2. var is variable name to contain function result:
a. If request was confirmed, var contains:

iii. ‘SET’
b. If one or more arguments were invalid or missing, var contains:

iv. ‘ERROR_ARGUMENT’
c. If authorization was not granted, var contains:

v. ‘UNAUTHORIZED nnn’
1. nnn is zJOS authorization exception code

Example:

See the above example.

Note:

Logical path length between zjset() and zjevent() functions issuance could
be vary, depend on your rexx program logic. If the path length is quite
significant, event might occur prior to zjevent() function issuance. In such
case, zjevent() will immediately return to your rexx program, since event

100 of 131 6. Implementing Your Innovation

information has already given in your program area. There is no indicator
telling you whether event occurs earlier than zjevent() function issuance.
You, therefore, should care of path length if time precision is required.

66..44..1100 zjstate()

zjstate() is a rexx function to obtain state information of any local workload. You
can use zjstate() function to detect whether a certain job is up or down. As it is a
privileged function, it needs authorization from zJOS. Nevertheless, the use of
zjstate() also depend on your local security setting.

Syntax:

var = zjstate (‘workload_name’)

or

var = zjstate (namevar)

Where:

‘workload_name’ is text of name of workload (jobname), which must be
enclosed with either single or double quote.

namevar is variable name to contain text of workload name (jobname).

var is variable name to contain function result.

a. If workload up, var variable will contain 5 words of:
‘UP type ASCB=xxxxxxxx ASID=xxxx JOBID=xxxxxxxx’

Type is either STC, JOB or TSU
b. If workload down, var contains:

‘DOWN’
c. If argument invalid (no argument or argument more than 8-byte)

‘ERROR_ARGUMENT’
d. If authorization not granted by zJOS

‘UNAUTHORIZED nnn’
nnn is zJOS authorization exception code

Example:

To obtain state information of VTAM, you can write in rexx:

x = zjstate(‘VTAM’)
vtamstate = word(x,1)

6. Implementing Your Innovation 101 of 131

Alternatively, you can use variable as follow:

job = “VTAM”
x = zjstate(job)
vtamstate = word(x,1)

Upon completion, if VTAM is up, x may contains:

“UP STC ASCB=00F8A000 ASID=0021 JOBID=STC09703”

You can get all information by parsing the result (x) using rexx standard
parsing method as follow:

If vtamstate = ’UP’ then,
 Parse var x,
 ‘UP’ jobtype ‘ASCB=’ ascb ‘ASID=’ asid,
 ‘JOBID=’ jobid

66..44..1111 zjwait()

zjwait() is a rexx function to enter to wait state based on TOD clock or interval.
Entering wait state is not a privileged process, hence zjwait() function need not
authorization from zJOS. Besides, this TOD processing internally is nothing to
do with zJOS. It is completely done within your address space. While waiting,
your rexx program is suspended until the time is expired.

Syntax:

var = zjwait (‘timeval’)

or

var = zjwait (timevar)

Where:

‘timeval’ is time value, which must be enclosed with either single or double
quote. Time value must be in the following format:

a. TOD value � wait until specified TOD. Format is:
HH:MM:SS

b. Interval value � wait for specified interval. Formats are:
+HH:MM:SS
+MM:SS
+SS

102 of 131 6. Implementing Your Innovation

timevar is variable name to contain time value.

var is variable name to contain function result.
a. If wait state was entered:

‘EXPIRED FOR nnnnnn SECS’
b. If wait state was not entered (for example: already late):

‘EXPIRED FOR -nnnnnn SECS’
c. If CPU clock was error:

‘ERROR_CLOCK RC=nnnn’
d. If argument invalid (no argument or argument more than 9-byte)

‘ERROR_ARGUMENT’

Example:

1. To wait until 23:30:00:

x = zjwait(‘23:30:00’)
y = zjwto(‘Now is 23:30:00’)

2. To wait for 5 minutes 45 seconds and using variable:

interval = ’+05:45’
x = zjwait(interval)

66..44..1122 zjwto()

zjwto() is a rexx function to issue WTO message to console. Issuing WTO is not
a privileged process, hence it need not authorization from zJOS. Besides, this
WTO processing internally is nothing to do with zJOS subsystem. It is completely
done within your address space.

Syntax:

var = zjwto (‘message_text’)

or

var = zjwto (msgvar)

Where:

‘message_text’ is a text of message to be issued, which must be enclosed
with either single or double quote.

msgvar is variable name to contain message text.

6. Implementing Your Innovation 103 of 131

var is variable name to contain function result.

a. If WTO was successfully issued:
‘ISSUED’

b. If WTO was unsuccessful:
‘ABORTED’

c. If argument invalid (no argument or argument more than 126-byte
length)

‘ERROR_ARGUMENT’

Example:

To issue “Good morning!” to system console:

x = zjwto(Good morning!’)

66..44..1133 zjwtor()

zjwtor() is a rexx function to issue WTOR message to console. Issuing WTOR is
not a privileged process, hence it need not authorization from zJOS. Besides,
WTOR processing internally is nothing to do with zJOS subsystem. It is
completely done within your address space.

As it is WTOR, reply is required to finish the function. While waiting for reply,
your rexx program is suspended until your message is replied. Reply text can
be any 1 to 54 characters string

Syntax:

var = zjwtor (‘message_text’)

or

var = zjwtor (msgvar)

Where:

‘message_text’ is a text of message to be issued, which must be enclosed
with either single or double quote.

msgvar is variable name to contain message text.

var is variable name to contain function result.

a. If WTOR was successfully issued:
‘REPLY=replytext’

104 of 131 6. Implementing Your Innovation

b. If WTOR was unsuccessful:
‘ABORTED RC=nnn’

c. If argument invalid (no argument or argument more than 126-byte
length)

‘ERROR_ARGUMENT’

Example:

To issue “Good morning!” to system console and require reply:

x = zjwtor(Good morning!’)
/* check reply text */
If substr(x,1,6) = “REPLY=” then,
 Parse var x “REPLY=” reply

6.5. Using zJOS Rexx Functions

If you are choosing rexx for your innovative rules, zJOS supported rexx functions
might help you exploring more your automation system. In standard zJOS rule,
except for zjevent() function, the use of these functions does not need specific
requirements. Just code them in your rule program.

66..55..11 Non-rule Rexx Programming

The zJOS supported rexx functions are not only for rule programming. You may
use them in your ordinary rexx programs. Some zjxxxx() functions which do not
need authorization, available even when zJOS address space not up. You can
either call them in TSO (batch or terminal session) or native MVS rexx job. The
functions, however, are in rexx local functions package which are placed in zJOS
load library. Hence, you have to include zJOS library in your STEPLIB DD.

In TSO terminal session, you must include zJOS load library in STEPLIB DD of
your logon procedure. In TSO batch job, you must include zJOS load library in
STEPLIB DD of your job JCL as follow:

//JTSOREXX JOB ...
//TSO EXEC PGM=IKJEFT01,DYNAMNBR=20,REGION=0M
// STEPLIB DD DISP=SHR,DSN=your.zJOS.load.library
//SYSEXEC DD DISP=SHR,DSN=your.rexx.library
//SYSTSPRT DD SYSOUT=A
//SYSPRINT DD SYSOUT=A
//SYSTSIN DD *

%your_rexx_module_name arguments

6. Implementing Your Innovation 105 of 131

/*

In native MVS rexx job, zJOS load library must also be included in STEPLIB DD
of your job JCL. Below is an example of native rexx batch job JCL.

//JMVSREXX JOB ...
//REXX EXEC PGM=IRXJCL,REGION=0M,

// PARM=’ your_rexx_module_name arguments’
// STEPLIB DD DISP=SHR,DSN=your.zJOS.load.library
//SYSEXEC DD DISP=SHR,DSN=your.rexx.library
//SYSTSPRT DD SYSOUT=A
//SYSPRINT DD SYSOUT=A
//SYSTSIN DD DUMMY

66..55..22 Using zjset() and zjevent() in Your Program

As explained in 6.4.3, zjevent() function without argument can trap occurrence of
any event previously requested by using zjset() function. In 6.4.7 explains that
you can request Sekar to collect event occurrence for your rexx program using
zjset() function. Both functions support message, command, end-of-step (EOS)
and end-of-job (EOJ) events. When you invoke combined zjset() and zjevent() in
your rexx program, you will feel you as if have a mini-Sekar. Your rexx able to
manage most of local events as if you use Sekar EMS table. If you need multiple
actions, you may do it outside. For example:

set1 = zjset(‘MSG’,‘msg_string’)
set2 = zjset(‘CMD’,‘cmd_string’,‘SUPPRESS’)
set3 = zjset(‘EOS’,‘jobname.stepname’)
set4 = zjset(‘EOJ’,‘jobname’)
Do forever
 event = zjevent()
 evtype = strip(word(event,1))
 Select
 When evtype = ‘MSG’ then call MSG_handler
 When evtype = ‘CMD’ then call CMD_handler
 When evtype = ‘EOS’ then call EOS_handler
 When evtype = ‘EOJ’ then call EOJ_handler
 Otherwise NOP
 End
End
Exit

MSG_handler:
/* routine to handle message events */
Return

CMD_handler:
/* routine to handle command events */
Return

106 of 131 6. Implementing Your Innovation

EOS_handler:
/* routine to handle end-of-step events */
Return

EOJ_handler:
/* routine to handle end-of-job events */
Return

Since its function and characteristic almost close with EMS main function, hence,
you should not use it in standard Sekar rule. Because, once issued, it will
entering wait state until the event it waiting for is occurred.

:

7. Using zJOS Control Panel 107 of 131

Chapter 7 Using zJOS Control Panel

zJOS control panel is ISPF panel driven by TSC module which only applicable
within TSO/ISPF online session. Since TSC is an authorized/privileged module
which capable to explore all zJOS internals and runs in supervisor state with key
zero, you should limit it from common user access. It’s supposed for zJOS
administration use only. Figure 2.2 in chapter 2 shows complete appearance of
zJOS control panel. Once zJOS was completely installed and setup using XDI
standard procedure, “XDI” verb should be registered in your current ISPF system
command table. Hence you should be able to issue “XDI” command anywhere
within TSO/ISPF environment. Upon issuance of “XDI” verb, a series of actions
are taken to invoke zJOS control panel.

Figure 7.1: zJOS status displayed in control panel

The heading of zJOS control panel is a list of product status, as shown in figure
7.1, which is updated each time enter-key is stroked. The body of panel is a list
of logs which is a scrollable region to contain respond messages against request
you have just entered. By default, if no message is logged, logs will contain most
recent internal statistics. Hence, when you just hit enter-key on the zJOS control
panel, complete status information is displayed.

Although zJOS control panel runs in privileged mode, all ISPF and PDF features
not impacted. The only thing you should understand is that zJOS control panel

108 of 131 7. Using zJOS Control Panel

does not support split screen. Means, when zJOS control panel is invoked while
ISPF in split screen mode, or you split the screen while zJOS control panel is in
session, you won’t be able to invoke zJOS control panel again before previously
invoked zJOS control panel is terminated. When you try, you will get message
DERISC801E.

Since control panel accesses zJOS control blocks, the panel won’t available until
zJOS up. However, once zJOS up, control panel will available even if zJOS is
brought down. Because, once zJOS up, it builds all data area and control blocks
in ECSA and leave them remain when it down. When zJOS is started back up, it
reclaims all data area and control blocks it has been built in previous session.

7.1. Starting and Stopping zJOS

The zJOS control panel provides facilities to start and shutdown zJOS address
space. These facilities are listed in action-bar menu of zJOS control panel. Note
that this facilities not applicable before zJOS was first time started since IPL.
Once zJOS up for the first time, these facilities then available for use. Each
particular facility will follow the situation. When zJOS is up, only shutdown
facility is available. When zJOS is down, only startup facility is available.

Figure 7.2: Action-bar menu when zJOS up

Figure 7.2 shows action-bar menu while zJOS up. Only available facilities are
highlighted and numbered. Darkened unnumbered options indicate that related
facilities are unavailable at the moment.

To shutdown zJOS, select option 8 and press enter-key, or place cursor on the
position of option 8 and press enter-key. Then confirmation window is popped up
as shown in figure 7.3, asking whether you sure to bring zJOS down. To abort
this confirmation, type “N” and press enter-key, or just press either F3 or F12.

7. Using zJOS Control Panel 109 of 131

Figure 7.3: Confirmation window is popped up when zJOS shutdown is selected

To confirm, type “Y” and press enter-key. This will cause the same effect as
when you issue command MODIFY XDI,SHUTDOWN on z/OS console. zJOS
then bring all internal and external subtasks, close all accessed dataset, cleanup
DIV and dataspace and all necessary interfaces, hold all its subsystem functions
and then terminate and lets system delete its address space.

Cleaning up DIV, dataspace and all interfaces take some amount of time. You
should not disturb the panel until zJOS main task is terminated. Otherwise, it will
take longer time to respond the panel. zJOS main task termination is indicated by
the following message:

DERRMG717I zJOS is down. Sekar, Puspa and AutoXfer are not available.

which is issued by zJOS resource manager when address space is purged.

When zJOS is down, status information is displayed on control panel as shown in
figure 7.4. All product states are down except for Sekar, stated as IDLE. This
because Sekar major task runs on zJOS subsystem which always exist once it
was generated. IDLE indicates that subsystem still exists and active, but, all its
function routines are held.

Anything issued while zJOS is down will be aborted. As shown in figure 7.4, in
log appears message “Request is aborted! zJOS subsystem does not
exist. ”. It doesn’t mean that zJOS subsystem is gone. Rather, control panel
unable to contact zJOS subsystem, because all its subsystem functions are held.
This is neither a product error nor a bug. This is actually set by design to simulate
as it were disappear. Once zJOS is brought back up, all held functions are
released and contactable.

110 of 131 7. Using zJOS Control Panel

Figure 7.4: Appearance of control panel when zJOS is down

To bring zJOS back up, go to action-bar again. Now, the appearance of action-
bar menu is changed as shown in figure 7.5. Most of options are darkened and
unnumbered, except for option 1, 7 and 9.

Figure 7.5: Action-bar menu when zJOS down

To bring zJOS back up, select option 7 by typing “7” in option field or position the
cursor in option 7 row, then press enter-key. Then startup information window
is popped up as shown in figure 7.6.

7. Using zJOS Control Panel 111 of 131

Figure 7.6: Startup information window is popped up when zJOS start is selected

You are requested to fill up all necessary zJOS startup information, include name
of procedure, subsystem, selected parameter suffix and start option. Popped up
window provides all default values based on recently used information. You may
change them as necessary. When complete, then press enter-key.

Procedure name must be a valid name of member of current PROCLIB dataset
(normally SYS1.PROCLIB) which is assigned to contain zJOS started task
procedure JCL. You are strongly recommended to use “XDI”, since it is product
default.

Subsystem name is a name you have already assigned to zJOS subsystem at
the first time started. You should reuse that name. Otherwise, the previous name
becomes orphaned subsystem which could potentially disturb z/OS internal logic
mechanism. If you think necessary to change the subsystem name, you should
consult with XDI support personnel to make sure all are on the right track.

Parameter suffix is 2-digit numeric xx to select zJOS system parameter member
XDISYSxx. Make sure the member you selected exist. Otherwise zJOS startup
will be aborted.

Start option is the way zJOS startup is to be performed. Normal way is WARM,
and is recommended. zJOS just bring all processes up and ready. Parameters
are just checked, instead of reloaded. If you want zJOS to reload all parameters,
for example when some were updated, then you should select COLD. Take a
note that you should never use option 3 (refresh memory) unless recommended
by XDI support personnel. This option is for maintenance purpose only. This is
to purge all zJOS modules in LPA, then reload them back from zJOS LOADLIB
dataset.

112 of 131 7. Using zJOS Control Panel

When complete, then press enter-key. zJOS startup will be performed soon,
but, it will take some amount of time. You should disturb the panel while startup
is in progress.

Unless you fill wrong information, panel will send the correct startup command to
z/OS. Hence, to avoid mistake in typing command which is potentially causing
serious problem, you are strongly recommended to always use control panel to
start zJOS.

7.2. Issuing Sekar Command

All zJOS console commands (including Sekar) are applicable on zJOS control
panel. The panel provides a command slot for each zJOS product as shown in
figure 7.7.

Figure 7.7: Command slots area of control panel

To issue Sekar command, you don’t need to enter complete command text.
Instead, just enter valid request in Sekar command slot and press enter-key. For
example, to reload Sekar parameters (EMS table), in console you need to issue
either .AUTO RELOAD or F XDI,AUTO RELOAD .

Figure 7.8: Entering RELOAD request to Sekar

The above commands actually ask console to send RELOAD request to Sekar in
zJOS address space named XDI. Using control panel, you just need to enter

7. Using zJOS Control Panel 113 of 131

RELOAD in Sekar command slot and press enter-key as shown in figure 7.8. The
panel will internally contact Sekar via cross-memory service to do the request.

Figure 7.9: Request to Sekar to reload different EMS table

To reload different EMS table, you just need to enter (overtype) 2-digit suffix of
XDIEMSxx member you want to reload in column Suf and press enter-key. You
don’t even need to enter anything in command slot. Figure 7.9 illustrates how to
request Sekar to load XDIEMS99 replacing current EMS table. This equivalent
as issuing either .AUTO RELOAD TAB=99 or F XDI,AUTO RELOAD,TAB=99 .

Reload or replace (load different suffix) EMS table request will always accepted
by Sekar. All timer tasks are then brought down prior to reload EMS table. All
current event listeners are also brought down as well. During reload process, all
Sekar functions are disabled. Upon completion of reload process, all those tasks
are brought back up with newly loaded parameters. No outstanding process is
carried over afterward. Hence you should really understand the impact

Sekar doesn’t have many commands to control, since it is an automation expert.
Other Sekar commands are START and STOP request. However, as mentioned
many times in earlier chapters, you should not stop Sekar, unless for very certain
case which recommended by XDI support personnel.

Be aware that control panel is only for zJOS administrator. Allowing unauthorized
people accessing this panel will potentially cause a serious problem.

7.3. Obtaining Helps

Some help panels and messages are provided to give you direct assistance
while you are facing zJOS control panel. In most cases, you need to press F1 to
obtain help information. Some unprotected fields, however, are sensitive against
F1 interruption. Hence you have to understand where you place the cursor prior
to pressing F1 to obtain help information as you expect.

114 of 131 7. Using zJOS Control Panel

77..33..11 Common Help Information

Common help information is a simple description which involves the whole parts
of the current panel or even the component. Such help is provided as a panel.
You can obtain common help information either from help-bar menu (as shown in
figure 7.10) or by hitting F1 with cursor placed outside sensitive fields. Option 1
of help-bar menu is to obtain brief information or tutorial regarding zJOS solution.
This explains you information about Sekar, Puspa and AutoXfer briefly. To
navigate (scroll) the panel, you have to use F7 and F8. To exit and return to the
control panel, you can either use enter-key, F3 or F12.

Figure 7.10: Help-bar menu

Other common help is zJOS console help, which explaining you how to operate
zJOS control panel. This help is obtained by pressing F1 with cursor position
outside F1-sensitive fields. Figure 7.11 shows appearance of this help panel
window. Since this help screen is larger than its window size, so the window is
scrollable. To navigate the scrolling, however, you can only use enter-key,
instead of F7/F8. Scrolling is wrap-around and only one-way direction, which is
forward direction. To exit and return to the control panel, you can either use
enter-key, F3 or F12.

7. Using zJOS Control Panel 115 of 131

Figure 7.11: Help panel

77..33..22 Field-specific Help Information

There are 2 field-specific help groups, which are command slots area (command
column) and parameter-suffix area (suf column). Help information only explains
selected field specifically. To obtain such help information, place the cursor on
certain field you expect to be explained, then hit F1 key.

Figure 7.12: Help message for Sekar command slot

Help information is displayed using ISPF message instead of panel, and popped
up in relative position to the addressed field. Figure 7.12 shows help message
for Sekar command slot. Figure 7.13 shows help message for Sekar EMS table
suffix.

116 of 131 7. Using zJOS Control Panel

Figure 7.13: Help message for Sekar EMS table suffix

8. Commands and Messages Reference 117 of 131

Chapter 8 Commands and
Messages Reference

8.1. Sekar Commands Facilities

Sekar console commands can be issued in 3 ways:

1. Via zJOS subsystem (on console)
2. Via MODIFY command to zJOS address space (on console)
3. Via zJOS control panel (in ISPF session on TSO)

88..11..11 Entering Command via zJOS Subsystem

zJOS subsystem provides a gate for you to enter Sekar command on z/OS MVS
console. Subsystem recognize all zJOS command when either prefixed by dot
sign (.) or XDI with a blank (“XDI “). Hence, the common command syntax is

prefixAUTO request

or for more specific is:

.AUTO request

or

XDI AUTO request

Where request is a service you want to obtain.

88..11..22 Entering Command via MODIFY
 :
Alternatively, you can also pass command to Sekar via z/OS MVS MODIFY
system command on console to zJOS address space. The command syntax is:

MODIFY XDI,AUTO request

or

118 of 131 8. Commands and Messages Reference

F XDI,AUTO request

Where request is a service you want to obtain.

88..11..33 Entering Command via zJOS Control Panel

The second alternative to issue Sekar command is via control panel. This facility
available on TSO/E terminal while in ISPF session as discussed in chapter 7. To
issue command, just enter the request on Sekar command slot as shown in
figure 8.1. See chapter 7 for further explanation.

Figure 8.1: Sekar command slot on zJOS control panel

8.2. Sekar Commands Reference

This paragraph only explains request verb instead of full command text.

88..22..11 LOAD request

Syntax on console:

LOAD

Syntax on control panel:

LOAD

Function:

Load EMS table onto memory.

8. Commands and Messages Reference 119 of 131

88..22..22 RELOAD request

Syntax on console:

RELOAD

or

RELOAD TAB=nn

Where nn is 2-digit suffix to address EMS table XDIEMSnn member of
zJOS PARMLIB

Syntax on control panel:

RELOAD

Function:

Reload EMS table onto memory to replace existing loaded table.

Note
On control panel reload has the same effect as load request. Sekar
uses specified nn in Suf column.

88..22..33 START request

Syntax on console:

SSI

Syntax on control panel:

START or S

Function:

Activate EMS, which is actually activating zJOS subsystem.

Notes:

1. On console, this can only be passed via MODIFY command
2. Normally EMS is automatically activated when zJOS is brought up.

120 of 131 8. Commands and Messages Reference

88..22..44 STOP request

Syntax on console:

STOP

Syntax on control panel:

STOP

Function:

Inactivate EMS, which is actually deactivating zJOS subsystem.

Note:
Unless for maintenance purpose and really recommended by XDI support
personnel, you should not stop EMS.

8.3. zJOS System Commands Facilities

To manage and control the zJOS address space and subsystem, zJOS provides
some commands. All zJOS commands can only be issued via MODIFY (F)
command or zJOS subsystem. MODIFY command syntax is:

F XDI,request

Subsystem recognize all zJOS agent command when either prefixed by dot sign
(.) or XDI with a blank (“XDI “). Hence, the command syntax is

.request

or

XDI request

Where request is a service you want to obtain.

8.4. zJOS System Commands Reference

This paragraph only explains request verb instead of full command text.

8. Commands and Messages Reference 121 of 131

88..44..11 ASCB request

Syntax

ASCB

Function:
List all ASCBs and each with detail information.

88..44..22 HELP request

Syntax

-HELP

Function:

Display zJOS command reference summary on console.

88..44..33 LIST request

Syntax

LIST object

Where:

object is either NETCCB, PIT, Q

Function:
LIST NETCCB � Lists existing chained NETCCB.
LIST PIT � Lists all captured JES PIT
LIST Q � List all enqueued zJOS resources.

88..44..44 RCMD request

Syntax

RCMD hostname command_text

Where:

hostname is host name of targeted system.
command_text is complete command text to be sent to agent site

Function:

Send command to agent site and ask agent to execute it.

122 of 131 8. Commands and Messages Reference

Notes:
• RCMD command only supported by zJOS subsystem
• Command does not need prefix. Just issue as appeared in syntax.

88..44..55 RJOB request

Syntax

RJOB hostname jobname

Where:

hostname is host name of targeted system.
jobname is name of job which is a member of JCLLIB

Function:

Send request to agent site to submit a job which is addressed by jobname.

Notes:
• RJOB command only supported by zJOS subsystem
• Command does not need prefix. Just issue as appeared in syntax.

88..44..66 SHUTDOWN request

Syntax

SHUTDOWN

Function:
Bring zJOS address space down.

88..44..77 START request

Syntax

START

Function:
Bring zJOS address space up.

Notes:
• START command not available at the first time startup of zJOS during

IPL cycle.
• START command can not be issued via MODIFY command.

8. Commands and Messages Reference 123 of 131

88..44..88 WTO or MSG request

Syntax

WTO text

Function:

Issue WTO macro to send message text to console
Notes:

1. Message is highlighted.
2. Message is deleted by subsequent WTO issuance, by means of DOM

macro. .

8.5. zJOS Agent Commands Facilities

To manage and control the agent, zJOS provides some commands for agent
which available only on agent site. All agent commands can only be issued via
zJOS agent subsystem. Subsystem recognize all zJOS agent command when
either prefixed by minus sign (-) or XDA with a blank (“XDA “). Hence, the
command syntax is

-request

or

XDA request

Where request is a service you want to obtain.

8.6. Agent Commands Reference

Since agent command is only prefix and request verb, this paragraph only
explains request verb prefixed with minus sign. To use XDA prefix, you can
easily just substitute minus sign with “XDA “ string.

88..66..11 CONNECT request

Syntax

-CONNECT [IP=server_address] [PORT=server_port]

124 of 131 8. Commands and Messages Reference

Where:
server_address is IP address or name of server, and
server_port is server port number (default is 7777)

Function:

Requesting connection (sign-on) to zJOS server.

88..66..22 DISCONNECT request

Syntax

-DISCONNECT

Function:
Requesting disconnection (sign-off) to zJOS server.

88..66..33 DROP request

Syntax

-DROP

Function:
Force socket task to be detached from zJOS agent address space. .

88..66..44 GET request

Syntax

-GET component_name

Where component_name is either EMS or SCD.

Function:
Requesting server to send EMS or scheduling parameters.

88..66..55 HELP request

Syntax

-HELP

Function:

Display zJOS Agent command reference summary on console.

8. Commands and Messages Reference 125 of 131

88..66..66 LIST request

Syntax

-LIST component_name

Where component_name is either EMS or SCD.

Function:
List down EMS or scheduling parameters received from server.

88..66..77 START request

Syntax

-START

Function:
Bring up agent address space.

Note:
START command can not be used for first start along with IPL cycle. .

88..66..88 STOP request

Syntax

-STOP

Function:
Bring down agent address space.

8.7. Sekar Messages

All Sekar messages have the following common format:

DERXXXYYYZ Message_text

DER indicates product package of zJOS-XDI

126 of 131 8. Commands and Messages Reference

XXX indicates component id, by which the messages is issued. The same
message text could be issued by more than one component.

YYY is message number, indicates the message id.

Z is message suffix code, indicates the status of message.

1. I – informational message
2. W – warning
3. E – error message
4. A – needs user action
5. T – logic tracing information

Message_text is information description of the message. Most of zJOS XDI
messages have clear and simple information.

Complete messages reference can be found in zJOS-XDI Messages Reference
manual.

8. Commands and Messages Reference 127 of 131

Notes

