

WWoorrkkllooaaddss
SScchheedduulliinngg
UUsseerr GGuuiiddee

Table of Content

CHAPTER 1 INTRODUCTION ...1

1.1. Workloads Scheduling ... 1

1.2. Automatic Workloads Scheduling .. 1

1.3. Pipelining Workloads Operation .. 3

1.4. Triggering Decision Method.. 5

1.5. Automatic Scheduling with Puspa .. 7

CHAPTER 2 GETTING STARTED ...8

2.1. Preparing zJOS Address Spaces ... 8

2.2. Starting and Stopping zJOS.. 8

2.3. Preparing Puspa... 8

2.4. Starting and Stopping Puspa... 10

2.5. Preparing National Holiday Table.. 14

CHAPTER 3 WORKING WITH SCHEDULER TABLES15

3.1. Scheduled-Workload Table... 17

3.2. Scheduled-Workload Entry... 22
33..22..11 Workload Identifier ... 24
33..22..22 Schedule Timeframe.. 26
33..22..33 Special Schedule Calendar .. 28
33..22..44 Crossed-Date (Midnight) Handling ... 31
33..22..55 Exception Handling... 32

3.3. Triggering Events Table .. 36
33..33..11 Managing Triggering Events Table... 36
33..33..22 Triggering Logic Mechanism .. 40
33..33..33 Complex Triggering Logic Mechanism .. 42

3.4. Triggering Events Entry.. 43
33..44..11 Triggering Event Identifier.. 44

CHAPTER 4 CONTROLLING PUSPA47

4.1. Status Information ... 47
44..11..11 Products Status Information .. 48

44..11..22 Statistics Information .. 51

4.2. Load Schedule Tables .. 54

4.3. Navigate Schedule Flow... 55
44..33..11 Halting Schedule ... 55
44..33..22 Resuming Halted Schedule.. 57
44..33..33 Restarting Halted Schedule ... 57

4.4. Control Panel Commands ... 58
44..44..11 LQ - Shows ENQued Processes .. 58
44..44..22 CAL - Shows Current Month Calendar ... 59
44..44..33 HOL - Shows Holiday Calendar.. 60

CHAPTER 5 MANAGING IN-MEMORY SCHEDULE TABLES61

5.1. DIV Capacity and Utilization.. 62

5.2. Tables Statistics .. 63

5.3. Managing Tables .. 64
55..33..11 Obtaining Helps... 67
55..33..22 Selecting and Updating a Schedule Table ... 67
55..33..33 In-memory Table Internal Structure .. 69
55..33..44 Copying a Table .. 69
55..33..55 Reorganizing a Table... 71
55..33..66 Deleting a Table .. 73

5.4. Managing Table Entry... 74
55..44..11 Bypass a Workload.. 75
55..44..22 Hold a Workload ... 76
55..44..33 Delete a Workload... 77
55..44..44 Restore a Workload ... 78

5.5. Saving Updates ... 79

5.6. Reviewing the Updates... 79

5.7. Fixing Inconsistent Table Structure ... 80

CHAPTER 6 OPERATE SCHEDULING SYSTEM82

6.1. Preparing Schedule Flow... 82
66..11..11 Initial Flow Workload ... 82
66..11..22 Cleaning Up Schedule Table ... 83

6.2. Starting Schedule ... 83

6.3. Monitoring Schedule Activities ... 85
66..33..11 Scheduler Logs .. 86
66..33..22 Detail Workload Information .. 88
66..33..33 Detail Triggering Information ... 89
66..33..44 Successors List Information .. 91

6.4. Halt and Restart Schedule... 92

6.5. Force a Workload to Run .. 93
66..55..11 Rerun a Workload ... 94
66..55..22 Unconditionally Run a Workload.. 94

6.6. Scheduling Report.. 95
66..66..11 Setting up Report... 95
66..66..22 Producing Report... 96
66..66..33 Re-downloading Report... 98

CHAPTER 7 INTEGRATED SCHEDULING..............................99

7.1. Integrated zJOS Network.. 99
77..11..11 Hardware Requirements .. 99
77..11..22 Software Requirements ... 100

7.2. Puspa for Integrated zJOS Network .. 101
77..22..11 Preparing zJOS Server... 102
77..22..22 Preparing zJOS Agent for z/OS... 105

7.3. Puspa Agent for z/OS... 107
77..33..11 Starting and Stopping zJOS Agent .. 107
77..33..22 Connecting and Disconnecting Agent ... 110
77..33..33 Controlling zJOS Agent .. 112
77..33..44 Remote Command... 113
77..33..55 Remote Job Submission .. 115

7.4. Planning The Integrated Scheduling .. 115
77..44..11 Puspa Concept versus GDPS... 118
77..44..22 Modernize Conventional DR with Puspa .. 119

CHAPTER 8 OPERATE INTEGRATED SCHEDULING SYSTEM............... 123

8.1. Reviewing Agent-Server Connection.. 123
88..11..11 Reviewing Server Site ... 124
88..11..22 Reviewing Agent Site.. 125

8.2. Monitoring Integrated Schedule ... 126
88..22..11 Monitoring Syslog... 126
88..22..22 Monitoring Schedule Log.. 128

CHAPTER 9 COMMANDS AND MESSAGES REFERENCE131

9.1. Puspa Commands Facilities... 131
99..11..11 Entering Command via zJOS Subsystem .. 131
99..11..22 Entering Command via MODIFY ... 131
99..11..33 Entering Command via zJOS Control Panel ... 132

9.2. Puspa Commands Reference... 132
99..22..11 HALT request.. 132
99..22..22 HOLD request ... 133
99..22..33 INIT request .. 133

99..22..44 LOAD request ... 133
99..22..55 REFRESH request ... 134
99..22..66 RELOAD request .. 134
99..22..77 RESTART request... 135
99..22..88 RESUME request .. 135
99..22..99 START request.. 135
99..22..1100 STOP request.. 136

9.3. zJOS System Commands Facilities... 136

9.4. zJOS System Commands Reference ... 137
99..44..11 ASCB request .. 137
99..44..22 HELP request .. 137
99..44..33 LIST request .. 137
99..44..44 RCMD request... 137
99..44..55 RJOB request... 138
99..44..66 SHUTDOWN request.. 138
99..44..77 START request.. 138
99..44..88 WTO or MSG request ... 139

9.5. zJOS Agent Commands Facilities... 139

9.6. Agent Commands Reference ... 139
99..66..11 CONNECT request.. 140
99..66..22 DISCONNECT request ... 140
99..66..33 DROP request.. 140
99..66..44 GET request... 140
99..66..55 HELP request .. 141
99..66..66 LIST request .. 141
99..66..77 START request.. 141
99..66..88 STOP request... 141

9.7. Puspa Messages .. 142

CHAPTER 10 ADVANCED TRICKS143

10.1. Using Sekar Standard EMS Features... 143

10.2. Using zJOS Rexx Functions .. 144

INDEX... ERROR! BOOKMARK NOT DEFINED.

1 of 153 1. Introduction

Chapter 1 Introduction

This topic introduces you to the concept of automatic workloads scheduling and
how zJOS/Puspa® do it for you.

1.1. Workloads Scheduling

Although computer system is an automation symbol, it doesn’t mean everything
in the computer can go automatically. This only means automatic computing by
mean of program, instead of manual computing. The way a program (in z/OS
system called job, task or workload) runs, however, needs to be started manually
by user or operator. It actually does not really matter for interactive computing
such as online transactions (e.g. CICS) or queries (e.g. MQ, DB2), since they are
started once a day, a week or even a month for long running process. For a
number of short running workloads, which are usually batch jobs, manual start
sometime become really matter.

In most of computing shops, z/OS system acts as mainframe or super server or
at least database server or data center, which consists of huge amount of various
complex databases. To manage huge amount of databases, sometime hundreds
batch jobs are needed. Normally a batch job depends on other jobs, hence can
only be started after one or more certain jobs has completed. Even,
dependencies inter jobs sometime must be done conditionally. For example, job
C needs only be started when job A finish with condition code 0 and job B finish
with condition code 8. Otherwise, start job D. In such cases, to start jobs is a
serious matter. Operation team can only work with job schedule manuals which
called “run-book”. That is the way mainframe computers were operated for tens
years prior to 80’s.

1.2. Automatic Workloads Scheduling

Since early 80’s, many software industries start think about automatic scheduling
chance. Automatic scheduling is a software product which acts as operators to
start each job follows “soft run-book” which came from the original hardcopy run-
book. Operator’s efforts then totally reduced. They only need to load soft run-
book and start first jobs. Once soft run-book is loaded and first jobs are started,
subsequent jobs will be started automatically follow the jobs operation flows as
stated on the soft run book. Operators team then have plenty of time to rest until
certain intervention request occurs.

1. Introduction 2 of 153

Automatic scheduler works much better than operator team. It doesn’t need time
to detect job status. Modern scheduler such as Puspa can even detect each job
step status. Hence, triggering mechanism can be established in job step level,
instead of job level as in manual operation. For example; there are 3 workloads,
JOB0, JOB1 and JOB2 as illustrated below:

// JOB0
//STEP01 …
// produce file A1
//STEP02
// produce file A2

// JOB1
//STEP11
// read file A1
// produce file B1
//STEP12
// produce file B2
//STEP13
// produce file B3

// JOB2
//STEP21
// read file B1
// produce file C1
//STEP22
// produce file C2
//STEP23
// produce file C3

In manual operation, operators usually do the following rule:

1. Start JOB0
2. Start JOB1 when JOB0 ended
3. Start JOB2 when JOB1 ended.

Job JOB1 depends on job JOB0 because job JOB1 needs file A1 which is
produced by job JOB0. Job JOB2 needs file B1 which is yielded by job JOB1,
hence job JOB2 depends on job JOB1. File A1 is actually produced by job step
STEP01 of job JOB0. Hence to run job JOB1 doesn’t need to wait until job JOB0
completely done. Job JOB1 can actually be started once file A1 produced and
closed, which means, job step STEP01 of job JOB0 done. Job JOB2 can also
be started once file B1 produced and closed, which means, job step STEP11 of
job JOB1 done. Such mechanism is very impossible to be done manually.
Although operators can browse each job using SDSF to see job step status, very
impossible for them to take action exactly at the time end-of-step (EOS) or end-
of-job (EOJ) event occurs. Because, information on SDSF session is snapshot

3 of 153 1. Introduction

and updated only when you press enter key. Besides, each TSO user can only
have 2 SDSF sessions, hence only 2 jobs can be viewed from one TSO user.

Using automatic scheduler, you can setup your soft run book to start job JOB1 at
the time job step STEP01 of job JOB0 ended, and start job JOB2 at the time job
step STEP11 of job JOB1 ended. Hence, STEP11 of job JOB1 is executed while
STEP02 of job JOB0 is running. STEP21 of job JOB2 is begun at the same time
as STEP12 of job JOB1. Therefore, all the above 3 jobs run faster with automatic
scheduler. Imagine if you have a huge number of jobs to run, how significant
you can reduce total turn-around time.

1.3. Pipelining Workloads Operation

Job step level triggering mechanism as explained in 1.2 is also called pipelining
or semi parallel jobs operation. In most batch production environment, each job
has inter-dependencies with other workloads as described in figure 1.1. More
number of workloads gets more complex inter-dependencies each other. Using
pipelining operation method, automatic scheduler can significantly reduce total
turn-around time needed by all workloads to get complete.

Figure 1.1: Inter-jobs dependencies.

1. Introduction 4 of 153

In manual operation, since triggering mechanism is done in EOJ-level, assuming
no think time delay, total turn-around time is sum of all job time reduced by sum
of job time of jobs which can be executed concurrently, as illustrated in figure 1.2.

Figure 1.2: Turn-around time in EOJ level triggering.

The automatic scheduler capable to establish pipelining operation using EOS-
level triggering mechanism. As explained on the above example, pipelining can
reduce total turn-around time needed by all jobs to complete. Figure 1.3 shows
illustration how total turn-around time needed in manual operation (figure 1.2) is
reduced. To complete 5 jobs in this example, total job time more or less sum of
3 job time.

Total length of turn-around time depends on the major characteristic of all jobs.
For certain application which their major inter-jobs dependencies in EOJ-level,
automatic scheduler will not able to establish EOS-level triggering. Total job
time will still the same as manual operation. Total turn-around time, however, will
still be reduced since automatic scheduler doesn’t have think time delay to watch
message and type START command on console or SUBMIT command on TSO
terminal. Besides, automatic scheduler could not be an ignorant like a human

5 of 153 1. Introduction

when do the work. It always works consistently as exactly what you have defined
in the soft run book, unless system or its program got problem.

Figure 1.3: Turn-around time in EOS level triggering.

1.4. Triggering Decision Method

As a modern workload scheduling solution, Puspa offers a very sophisticated
inter-workload triggering decision method, especially for batch-job and STC type
of workload which has dependency with multiple predecessors. Unlike most of
conventional job schedulers which only use a series of logical AND comparisons
among predecessors to get a final triggering decision, zJOS/Puspa, however,
allows you to group predecessors. Within each group, Puspa uses a series of
logical OR comparisons among predecessors to get a group level triggering
decision. Inter-group, Puspa uses a series of logical AND comparisons among
groups to get a final triggering decision.

Combined with pipelining workload operation mechanism, this method becomes
a very flexible method for users to draw and design the workload schedule flow

1. Introduction 6 of 153

exactly meet their own idea. Figure 1.4 illustrates an example case of such
method application.

Figure 1.4: Combined multi-stages triggering decision in workload pipelining.

Puspa is capable to handle up to 100 groups. Each group can accommodate
any number of workloads, no limit. Hence total number of predecessors of each
scheduled workload is almost unlimited. The only limit is memory capacity.

This is exactly a revolution in workload scheduling technology. The original idea
is to encourage users to be more creative and understand that scheduling flow is
a fundamental of an application design as well as accompanying recovery flows.
There is no standard for both types of flows. Hence in the future when they
develop application, both types of flows are included in the design.

7 of 153 1. Introduction

1.5. Automatic Scheduling with Puspa

Puspa or zJOS/Puspa® is one of modern automatic workload scheduler for z/OS
or OS/390 system. It works based on job start, EOS and EOJ events, as well as
commands and messages occurrence. Since it intercepts JES2 and resource
manager directly, Puspa does not need SMF and JES2 exits. This is to avoid
dependencies with users’ modification area. As a modern workload scheduler,
Puspa supports the following features:

• Multi-triggers schedule control with unlimited number of triggers.
• Pipelining operation with EOS-level triggering mechanism.
• Conditional EOS/EOJ triggering based on complex large-range Boolean

condition code checking.
• Multi-schedule flow with single control.
• Timeframe control for each schedule entry.
• Integrated scheduling system on networked multi z/OS or OS/390 hosts.
• Embedded console commands on each schedule entry.

Multi triggers, pipeline and complex condition code checking are very common
features on most of modern scheduler products. The significant feature of Puspa
is its capability to establish an integrated scheduling system among several z/OS
or OS/390 hosts on TCP/IP network, regardless sysplex is implemented. Puspa
doesn’t need sysplex. A z/OS or OS/390 host can join as a member in integrated
scheduling system as long as it connected on the same TCP/IP network and has
zJOS agent installed and active. Such configuration is then called as integrated
zJOS network.

The integrated scheduling is a scheduling system implemented in integrated
zJOS network. It means a job on each z/OS or OS/390 host can be triggered by
other jobs on any other z/OS or OS/390 host on the same network. Puspa runs
on one of z/OS or OS/390 hosts on the network which is assigned as scheduling
server.

Other significant feature is timeframe control. Combined with multi schedule flow
capability, Puspa does not need schedule-id to select and activate a schedule
flow. When you start schedule (issue SCD START), Puspa will automatically
activate the correct schedules flows based on timeframe.

8 of 153 2. Getting Started

Chapter 2 Getting Started

zJOS/Puspa® is a modern workloads scheduling solution software product which
is bundled together with zJOS/Sekar® (EMS manager) and XDI/AutoXfer®
(report/spool distribution) in a single package called zJOS-XDI. All are running
in a single MVS address space, named XDI, which is zJOS main address space.

Regardless AutoXfer is used in your environment, zJOS main address space is
always accompanied by XDILGR address space, which actually is AutoXfer
logger.

2.1. Preparing zJOS Address Spaces

Please refer to zJOS/Sekar® User Guide, point 2.1 chapter 2.

2.2. Starting and Stopping zJOS

Please refer to zJOS/Sekar® User Guide, point 2.2 chapter 2.

2.3. Preparing Puspa

By default, Puspa parameter sample is provided in zJOS-XDI product installation
package, in XDISCD00 member. You should not tailor directly to any zJOS
PARMLIB member, including XDISCDxx, which can destroy their sensitive binary
information. You should use XDI ISPF panel instead. Issue “XDI” on any ISPF
session, zJOS control panel then appears on your terminal screen as shown in
figure 2.1 below.

Before you start zJOS for the first time, you have to make sure that VSAM LDS is
already defined for Puspa. When zJOS is started, VSAM LDS is then formatted
to accommodate all Puspa data areas and schedule tables. LDS is then used as
DIV backup which is mapped in 2 ways. Internally within zJOS address space,
DIV is mapped in extended private area. Externally, outside the address space,
the DIV is mapped as dataspace and shared among zJOS external services and
subsystem.

Once LDS was formatted, Puspa then load schedule table XDISCDxx pointed to
by XDISYSxx onto allocated space on DIV and make it effective for use. Loaded
schedule table will remain on DIV permanently, until you ask Puspa to reload it

2. Getting Started 9 of 153

(issue RELOAD command). zJOS control panel provides facility to update Puspa
schedule table on DIV directly. Hence, you actually don’t need to modify and
reload XDISCDxx member.

For subsequent zJOS startup, Puspa checks whether addressed XDISYSxx is
already on DIV. If so, no loading is performed, rather, just make it effective for
use. Else, load it onto DIV and make it effective for use.

Before you initialize Puspa, you have to prepare its parameters correctly as you
expect, which is schedule table. Schedule table is a “soft run-book”, which
consists of list of scheduled jobs and several triggering jobs. Each scheduled job
accompanied by groups of triggering jobs, except for first job of each schedule
flow. You can have more than one schedule table. But, only one table can active
at a time. Each schedule table logically must consist at least one schedule flow.

Figure 2.1: zJOS primary control panel

Either to customize Puspa given sample of schedule table or build your own from
scratch, you have to enter to XDI/ISPF interface from TSO. Login to TSO userid
you have assigned as XDI administrator logonid (one that you used to install
zJOS-XDI). Type “XDI” command on any ISPF panel or session, then zJOS
primary control panel occurs as shown in figure 2.1. Then click action-bar, zJOS
action-bar menu will appear in small window as shown in figure 2.2. To reach
the parameters, select option 1 of action bar menu.

10 of 153 2. Getting Started

Figure 2.2: zJOS primary action bar menu

2.4. Starting and Stopping Puspa

Starting Puspa means start automatic scheduling process. Once start request is
issued, all workloads names registered in the schedule table are then executed
based on defined condition. Scheduling process continues until all registered
workloads were done or an unresolved condition is encountered, or requested to
stop. When all registered workloads were completed, Puspa then set its state to
passive until the table is refreshed. When unresolved condition is encountered,
Puspa will still in active state until the condition is resolved or table is refreshed.

When schedule table you attempt to use is already on DIV, you may straight
requesting Puspa to start scheduling process. Such condition is indicated as
“READY” in state column as shown in figure 2.3. Issue START request in Puspa
command slot on control panel, then press enter-key.

Figure 2.3: Puspa state when schedule table is loaded

When schedule table you attempt to use is already on DIV, you may not straight
to start Puspa. Rather, you must initialize Puspa with a schedule table prior to
start it. Issue INIT request in Puspa command slot on control panel as shown in
figure 2.4, then press enter-key, or issue INIT command on console as follow:

.SCD INIT

2. Getting Started 11 of 153

Figure 2.4: Initializing Puspa via control panel

Figure 2.5: Initializing Puspa using console command

Figure 2.5 shows console log of Puspa respond messages when you issue INIT
command. It shows you, which table is loaded. Once INIT complete, Puspa is
then ready for work, but it is not working yet. Message 322 tells that the status of
Puspa is active. It doesn’t mean Puspa is working, instead just ready. On state
column of zJOS control panel is displayed as READY.

You can load more than one table. Each will be held on DIV permanently until
you replace it by reloading the same table.

To start Puspa work, you can either issue START request in Puspa command
slot on zJOS control panel as shown in figure 2.6 or issue START command on
console as follow:

.SCD START

12 of 153 2. Getting Started

Figure 2.7: Starting Puspa activity

Puspa then starts schedule processing based on which loaded schedule table is
selected. All schedule entries are searched to find all available schedule flows
and schedule them as shown on console log in figure 2.7.

Figure 2.6: Starting Puspa

2. Getting Started 13 of 153

Availability of each schedule table is check against its timeframe, which might be
influenced by your own specific operation calendar. Hence you don’t need to
be bothered to select which schedule to start today. Console log in figure 2.7
shows 2 jobs are started (submitted), job JTEST00 and JCOBA01. Each job
represents a schedule flow, and as the first job of flow. Following these 2 jobs,
Puspa will automatically start subsequent jobs according to the logic of each flow
you have defined in schedule table. Jobs in one schedule flow can trigger other
jobs in other flows.

When the last job of the longest flow completes, then one schedule cycle was
completed. Puspa then enters to passive state and waits for next instruction.
You can not reissue START command to restart schedule flows until you either
issue REFRESH or INIT. Unless you need to reload schedule table, you can just
issue REFRESH request in Puspa command slot on zJOS control panel as
shown in figure 2.8 or issue REFRESH command on console to cleanup all
recorded status in schedule table for next schedule cycle, as follow:

.SCD REFRESH

Figure 2.8: Refreshing schedule table

Although you can manually start the same jobs before, within or after schedule
cycle processing, Puspa will not record them. Puspa traces, detects and records
only the jobs it was started. Nevertheless, manually started jobs might affect the
execution logic of schedule flow when they cause conflict on results. For
example, job A which is registered in a schedule flow, causing file A to be read
and then deleted. If you start job A manually during schedule progress before job
A is started by Puspa, then file A gone. All scheduled jobs which need file A of
course affected. Hence, logic flow of schedule process then affected as well.

Puspa will automatically shutdown when zJOS address space is brought down.
It can also be brought down without bringing zJOS address space down. To stop
or shutdown Puspa, issue STOP request in Puspa command slot on zJOS
control panel as in figure 2.9 or use the following STOP command on console:

.SCD STOP

14 of 153 2. Getting Started

Figure 2.9: Stopping Puspa

Although actually nothing is sensitive, unless required for maintenance or other
emergency situation, you don’t need to shutdown Puspa. Once STOP command
is issued, Puspa is then brought down regardless its current state. Hence, you
have to make sure Puspa is really in idle state (no work) before you issue STOP.

In an integrated scheduling environment, where Puspa handles schedule of jobs
which distributed on among integrated zJOS network, shutting down Puspa is not
recommended. It causes all connected agents purge schedule table they have
already received from Puspa and inactivate their job status listeners. It becomes
inefficient time when you restart Puspa very soon later. You have to wait until
all agents have received schedule table and confirmed ready.

Figure 2.10: Puspa is in passive state

2.5. Preparing National Holiday Table

One of important timeframe factor is holiday calendar. For each schedule flow,
you have to decide whether it available in the holiday. Further about preparing
holiday table can be found in point 2.5, chapter 2 of zJOS/Sekar User Guide.

3. Working with Scheduler Tables 15 of 153

Chapter 3 Working with Scheduler
Tables

Scheduler tables which also called scheduler parameters, consist of a paired of
scheduled-workload table and several triggering-predecessor or trigger-event
tables. To work with scheduler parameters, you have to login to administrator
logonid, TSO userid of which you were using to install zJOS-XDI package. Issue
XDI command in ISPF command line field on any panel of any session, then
primary zJOS control panel appears as shown in figure 2.1 (chapter 2).

zJOS provides 2 ways to work with Puspa parameters, source parameters which
deal with PDS member, and in-memory parameters which deal with dataspace
which is backed up by DIV. When your Puspa is newly installed, which no table is
ready in dataspace, you are recommended to prepare source table, instead of
work directly with empty dataspace. Select option 1 on zJOS action-bar menu as
shown in figure 2.2, then hit enter-key to obtain parameter panel as shown in
figure 3.2. Prior to appearance of zJOS parameters panel, a window is popped
up as shown in figure 3.1 asking which parameter suffix you are going to use and
in which library base system parameters are retrieved. To proceed, you have to
complete this window first. Parameter suffix must be filled with 2-digit xx to
points to zJOS system parameter XDISYSxx. Although any 2 EBCDIC characters
are allowed, the 2-digit suffix should be numeric characters.

PARMLIB dataset must be filled with name of partition dataset (PDS or PDSE)
which is being used or planned to be used as zJOS parameter library. If dataset
is being used by zJOS, by means concatenated as PARMLIB DD in XDI
procedure, all parameters you are going to manage can be activated soon. Else,
all parameters are just candidate for use later. You must concatenate the dataset
in PARMLIB DD of XDI procedure first.

Figure 3.1: Asking parameter suffix and zJOS PARMLIB name

16 of 153 3. Working with Scheduler Tables

Upon completion of this question, window disappears and zJOS-XDI parameters
panel is then reached as shown in figure 3.2. You may need to fill or update all
necessary base parameters. This panel is larger than screen size, so you need
to scroll it up to find next parameters.

On the top of this panel is a menu to which product you want to go. To reach the
Puspa parameters panel, select option 2 (jobs scheduler) and press enter-key.
At initial time, before you do it, you have to complete Puspa product key and
automation suffix in this panel first. Ask your XDI support personnel to provide
the product key.

Figure 3.2: zJOS-XDI parameter

As mentioned above, a schedule table consists of one scheduled-job table and
several trigger-event tables. Physically, however, all are placed in a single PDS
member, XDISCDxx, which is assigned as zJOS-XDI parameters library. Once
the member is loaded, one scheduled-job table and several triggering-job tables
then generated in dataspace memory, as shown in figure 3.3.

3. Working with Scheduler Tables 17 of 153

Figure 3.3: Scheduled-workload and trigger-event tables

3.1. Scheduled-Workload Table

Scheduled-job or scheduled-workload table as shown in figure 3.4 is Puspa
primary schedule table. Initially, before you have in-memory table, you must
build source-level table which is PARMLIB member. To reach this table, select
option 2 on parameters panel in figure 3.2. Although, detail of each panel in
source-level table handling is simpler, basic panel structure involved for source-
level table handling is almost similar with one in in-memory table management.
Beside, once converted to in-memory table, you would never back work with
source-level table. Therefore, to avoid redundancy, each panel described here is
actually for in-memory tables.

Managing scheduled-job table

Scheduled-job table panel (figure 3.4) provides facilities to manage scheduled-
job table as described in figure 3.5, e.g.: Function keys, action bar menu and S
column prefix command. Function keys consist of 4 keys:

• F1 – obtain help panel or window
• F3 – save and close the table
• F7 – scroll up screen
• F8 – scroll down screen
• F12 – abort all changes and close the table.

18 of 153 3. Working with Scheduler Tables

Figure 3.4: Scheduled-job table panel

Action-bar of this panel provides facility to add a new entry. Exit choice in action
bar menu is to save and close the table, the same as F3. Other facilities can be
done in S column. S column is input column for 1-digit prefix command to
manage the table. Valid prefix commands in this column are:

• S – Select particular workload entry in detail as shown in figure 3.6.
o This gives you chance to update the detail of selected event entry

• T – Show associated triggering predecessors table as in figure 3.15.
o This gives you chance to manage triggering predecessors table of

selected scheduled-workload.
• F – Forecast successors list which is triggered by selected workload.

o This gives you chance to check whether the workload you have
defined is as what you desire.

o This facility is applicable only in in-memory table handling.
• D – Delete particular entry from the table.
• B – Bypass workload from scheduling process.

o During scheduling process, bypassed workload will always be
treated as complied trigger for its successors.

3. Working with Scheduler Tables 19 of 153

o This facility is applicable only in in-memory table handling.
• U – Undo (restore) previous delete or bypass request.

o This facility is applicable only in in-memory table handling.
• A – Add a new event entry to the table.

o Selected entry is ignored, then obtains detail event entry panel with
all field blanks and ask you to fill up.

o This can also be done from action bar selection menu.

Heading of this panel shows current table suffix and main job/JCL library dataset
name. If you concatenate job/JCL libraries in JCLLIB DD card of XDI procedure,
this library name is ignored.

Figure 3.5: Managing scheduled-job table

As shown in figure 3.5, table suffix and job/JCL library dataset name appear on
panel. These might not be schedule table and job/JCL library which currently is
being used by Puspa, instead schedule table library currently you are managing,
according to selected zJOS-XDI base parameter suffix before entering zJOS-XDI
base parameter panel as in figure 3.2.

Shown in the panel, Job/JCL library is only a single dataset. You can only specify
a single library on zJOS-XDI base parameter (XDISYSxx). To have multiple JCL
libraries, use JCLLIB DD concatenation in the XDI procedure instead. When XDI
connection to JES SSI is failed, however, Puspa will only used a single Job/JCL
library specified in base parameter.

20 of 153 3. Working with Scheduler Tables

Workload column

Lists scheduled workload names and types. For batch-job (JES initiated job) and
STC type of workload, the jobname must follow standard MVS job naming rule.
For command type of workload, the jobname is just a unique name you assign to
be used by Puspa (internally) to identify the workload.

For remote workload, at the moment Puspa supports batch-job type workload
only. Job/JCL library must be on targeted system and concatenated in JCLLIB
DD of XDA procedure, which is the zJOS Agent. Existence of remote job can
not be checked by Puspa. Later in the operation, Puspa just send the jobname
to zJOS Agent

System column

This column show name of system on which the workload to be scheduled. For
local system, zJOS-XDI obtains the actual system name based on specified
SYSNAME= parameter in your current IEASYSxx member in system parameter
library (normally SYS1.PARMLIB). For remote system, the name is host name
of the system in the TCP/IP network. For the z/OS host, refer to the value of
HOSTNAME parameter specified in TCP/IP data.

Remote workloads can only be managed by Puspa only if zJOS-XDI agent is
active on that remote host. Workload events (EOS and EOJ) will be detected by
agent and reported to Puspa, for further actions, including triggering successor
workloads. When condition is complied to trigger remote workload, Puspa then
send request to agent in the targeted host to execute the workload.

Date and time columns

These are major timeframe columns which consist of start- and end-date, and
start- and end-time to filter whether workload is valid to be processed. Checking
is done for each particular filter and only if one specified.

Asterisk (‘*’) in start and end dates indicate no date range specified. In detail
entry panel, when selected, such dates appear as blank.

Day list and holiday column

These are minor timeframe to do second filter. Day list is a list of valid week day
from Sunday to Saturday. Holiday means national holiday you have registered
in the holiday calendar table. To schedule the workload, calendar must comply
that current day is a checked valid day, means the day is selected day, including
if a holiday. By default, all 7 week days are selected if not holiday. Means, the
workload will be scheduled everyday except on holiday, unless holiday option is
checked.

3. Working with Scheduler Tables 21 of 153

Minor timeframe filtering is overridden by special schedule calendar option if one
is selected. The special schedule calendar doesn’t appear in this panel. Rather,
in workload detail panel as shown in figure 3.6 we discuss later in this chapter.

Saving and aborting changes

When you finish work with the schedule table and you want to save all changes
you have made, press F3. Update progress appears in small window, then panel
close and back to previous panel. XDISCDxx member in XDI parameter library
is then physically changed.

When you want to abort all changes you have made, press F12 instead. The
abortion alert then appears in small window. Panel then close and back to
previous panel. XDISCDxx member in XDI parameter library is then remains
unchanged. Take a note that in source-level table, abortion in this level is total
cancellation. The XDI/ISPF interface will not remember what you have done so
far. All changes you have done will be losing. If you want to abort some changes
you have made but not all, you must do abort particularly while you were in event
detail level.

Be careful when you delete a scheduled-workload entry. Delete command
doesn’t have detail level panel. Once “D” was invoked, selected entry is then
instantly deleted from the table.

In in-memory table, however, total abortion (F12) is not supported. As you are
working directly with memory, once a change is made, memory content is
changed. The only chance to abort the changes is at particular workload level
by pressing F12 in either workload detail panel or trigger (predecessor) detail
panel. Therefore, to prevent your table from unexpected changes, most of table
handling panels need confirmation to proceed. For entry deletion, Puspa does
not really purge the entry, rather just mark it as deleted. You may restore deleted
entry easily, just by typing ‘U’ prefix command.

22 of 153 3. Working with Scheduler Tables

3.2. Scheduled-Workload Entry

Figure 3.6: Scheduled-workload entry detail panel (scrollable)

Figure 3.6 shows scheduled-workload entry panel. It displays content of selected
workload entry definition. This panel is obtained by typing S on selected entry
and then hit enter-key. You can just review or update each field of this panel. To
update, just overtype information fields you want to change, then hit enter-key.
See figure 3.7 for brief description of each field.

Picture in figure 3.6 shows workload entry panel for in-memory table. For source-
level table, such panel looks much simpler. Hence, initial table which is built in
source-level need to be reedited once it loaded into DIV as an in-memory table.
It will be no really matter since initial table normally is only few entries just to
initialize the DIV.

3. Working with Scheduler Tables 23 of 153

Figure 3.7: Managing scheduled-workload entry detail

24 of 153 3. Working with Scheduler Tables

33..22..11 Workload Identifier

Within Puspa scheduling system, workload is identified by name of job or more
popular as jobname, name of system on which workload is to run, and type of
workload. Other field included in this group is member name.

Type of workload

At the moment, Puspa only support 3 types of workload:

Batch-job (JOB)

is also known as JES initiated job or even more popular as just job. When
you mention JOB, people automatically interpret as batch-job. Batch-job
is one of z/OS standard workload. This workload runs on MVS initiator
address space and fully managed by the job entry subsystem (either JES2
or JES3). Since number of initiators is fixed, hence, multiprogramming
level of batch-jobs is also fixed.

To start a batch-job, the job deck of cards is stacked on card-reader, then
release them. Currently we rather use virtual devices. Job deck of virtual
cards, which is a fixed 80-byte record file of sequential dataset or PDS or
PDSE member, is stacked onto internal-reader (INTRDR). Name of deck
or dataset or member containing job JCL cards does not important. Name
of batch-job is generated by JES based on name of JOB card found in job
stream received by JES.

Started-task (STC)

is also known as system task. STC is also one of z/OS standard workload.
In the system, such workload runs on its own address space. By default
STCs are managed by primary subsystem which is JES. However, in
some cases, STC can runs under non-primary subsystem, such as
MASTER and others.

To start an STC, issue START <jobname> command. System then search
all its current PROCLIB datasets to find a member with name match with
jobname specified on START command text, which should containing task
procedure cards. Matched member is then dumped onto virtual reader
(STC internal reader) for execution. Name of STC is generated by system
based on name of PROC card found in procedure stream.

Command

3. Working with Scheduler Tables 25 of 153

Although command is also z/OS standard workload, it’s not very common
to be involved in workload scheduling. Nevertheless, Puspa support this
type of workload to be scheduled. However, the status information can
not be explored, since usually command is just a subtask in either master
or console address space. Command workload actually doesn’t have
name. In Puspa scheduling environment, you can name it with any unique
word just to identify it.

Workload name

Name of workload, which is to be scheduled. Combined with workload type and
system name must become a unique identifier within the whole schedule table.
Though, workload name itself is recommended to be unique. The mean of job
or workload name depends on its workload type.

For batch-job, jobname is a name specified on the JOB card of job JCL. Since
Puspa deal straightly with the job JCL libraries, you are allowed to specify job
name differently from member name. This gives you flexibility when you need to
schedule more than once within a single schedule flow. You can easily define,
for example, JOBX1, JOBX2, JOBX3 all with the same member, JOBX. Puspa
changes the original jobname to specified jobname while dumping it onto internal
reader. This is applicable only for local batch-job. For remote job, member name
must always the same as jobname.

For STC workload, jobname is a name specified on the PROC card of job JCL.
Puspa relies on START command to get STC up, instead of deal with dataset in
which STC procedure is contained. Since the way START searches STC for
execution is by searching name of PROCLIB members, therefore, STC jobname
should the same as name of member containing current valid system procedure
libraries. Hence, for STC, member name is always the same as workload name.
Otherwise, Puspa ignores it.

For command workload, name or jobname is just a name to be used internally by
Puspa to identify the workload. No member is to be addressed. When you
specify member name, Puspa ignores it. No job status information is collected
by Puspa, rather, just time of its occurrence.

System name

Name of the system on which workload is going to run. See explanation on the
previous par (3.1).

26 of 153 3. Working with Scheduler Tables

Member name

Name of member of job JCL library (JCLLIB DD) dataset in which the job JCL is
contained. Member name is applicable only for local batch-job type workload.
For other type of workload, member name is ignored.

For local batch-job, member name can be different with its jobname. This is a
chance for you to schedule a batch-job more than once during schedule cycle.
Name of job in JOB card will be replaced by jobname specified in this schedule
entry definition.

33..22..22 Schedule Timeframe

Timeframe is combined of major and minor time filter during which workload is
considered eligible for scheduling. Minor time filter is overridden by special
schedule calendar if one selected. When no triggering event is associated and
timeframe is specified, then the workload will only be triggered by TOD event on
every valid day.

Start-date and end-date

Start date and end date are major time filters during which workload is eligible for
further scheduling evaluation. No default for start- and end-date. If not specified
or set to zeros, no date filtering is done in this level, rather, straightly in clock time
level filter. In schedule table panel appear as ‘****/**/**’ and in schedule entry
detail as blanks.

Date-range filtering can also specified partially, for example, ‘****/09/**’. This
means, Puspa only evaluates month. Be careful to specify partial date range.
Lets say, if you specify date range ‘****/09/**’ to ‘****/**/**’, you got the same
effect as‘****/09/**’ to ‘****/12/**’. Puspa grants the schedule in month 09, 10, 11
and 12. If you expect to be granted only in every September, you must specify
‘****/09/**’ to ‘****/09/**’.

Other example, to get granted on every 1st to 10th monthly, you must specify date
range ‘****/**/01’ to ‘****/**/10’. To get granted on every 1st to 10th monthly in
every 1st semester, you need to specify date range ‘****/01/01’ to ‘****/06/10’. Be
careful, for partial date-range, specified value in start date must not higher than
end date. Wrongly specified date-range will cause entry is flagged as error entry
and will never be used to evaluate date-range filtering. It will affect to your whole
scheduling system if this entry is to be used to trigger other entries.

Unless you very sure how schedule flow is expected to process, you are strongly
recommended not to specify date-range filtering, except for workloads which are
assigned as initial jobs for the schedule flow. In most of scheduling systems,

3. Working with Scheduler Tables 27 of 153

date-range decision is made only during initial process. Subsequent workloads
normally just follow their predecessors.

Unless unspecified, start date must not greater than end date. Wrongly specified
date range causes workload will never be scheduled.

Start-time and end-time

Start time and end time are second major time filters during which scheduled
workload is eligible for further evaluation. Default start time is 00:00:00 and end
time is 24:00:00. Leave them both default means, no filtering is done in this
level, rather, straightly to minor time filters. Hence, any time non-TOD trigger
occurs during valid date range, will be considered as valid schedule and filtering
is then continued to minor timeframe. Workload will only be scheduled within this
clock range timeframe.

Clock time filtering is very sensitive filtering for scheduling. Once a workload got
late, it will affect all its successors will also late. Meanwhile, if its successors have
clock time filtering, some might get expire. Hence, unexpected result may yield
for the whole schedule flow.

If triggers come earlier than start time, workload is then placed in wait state to
delay schedule until start-time is reached. Such situation sometime is expected
in complex scheduling mechanism, where workload is planned to be triggered by
its predecessors but allowed to start at certain time. However, if such situation is
not expected, it even wastes the time and could potentially affecting the total
turn-around time of the whole schedule flow.

Unlike date range, in clock range, start time may greater than end time. Crossing
midnight is assumed for such cases. You may specify start time 20:00:00 and
end time 01:00:00. This means, the workload will only be scheduled between
20:00:00 of the day and 01:00:00 on next day,

Unless you very sure how schedule flow is expected to process, you are strongly
recommended not to specify time-range filtering, except for workloads which are
assigned as initial jobs for the schedule flow. In most of scheduling systems,
time-range decision is made only during initial process. Subsequent workloads
normally just follow their predecessors.

Valid week-day list and holiday

Beside first and second major timeframe, Puspa offers other chances to validate
schedule based on day-of-week and holiday. Day-list offers which day-of-week
during major timeframe/timespec, specified workload is valid to be scheduled.
To choose the day-of-week, mark check box in front of selected day name with

28 of 153 3. Working with Scheduler Tables

slash. By default, all days are selected. This means, workload will be scheduled
everyday during date and time range.

Holiday here means national holiday. It offers chances whether you want to treat
schedule differently on the holiday. By default, holiday is selected. This means,
national holiday will be ignored by schedule filtering process. If you unmark
holiday check box, workload will not be scheduled on the holiday, although that
day is selected in both day-list and date-range.

National holiday is national specific calendar. Hence it can not be provided by
zJOS-XDI. Before you can use holiday, you must build your national holiday
table based on your national calendar. Otherwise, holiday filtering will always be
ignored. See par 2.5 in chapter 2 of zJOS/Sekar® EMS User Guide manual for
detail about preparing holiday table.

Unchecked holiday overrides week day list. This means, when holiday option is
unchecked, holiday filtering will always be done regardless current week day is
valid. For instance, if today is Wednesday and is checked, and holiday is
unchecked, workload will not be scheduled unless today is not holiday.

Unchecked week day overrides holiday. This means, when a certain week day is
unchecked, holiday filtering will not be done on that day. For instance, if today is
Wednesday and is unchecked, workload will not be scheduled today regardless
holiday.

33..22..33 Special Schedule Calendar

Many places have special culture on operation calendar. zJOS/Puspa is trying to
adopt your culture by providing various special schedule calendar listed on
workload detail panel as shown in figure 3.8. Calendar contains the following
special days:

• IDAO – initial working day after off
• IWWD – initial week working day
• IMWD – initial month working day
• EMON – end of month
• FWWD – final week working day
• FMWD – final month working day

3. Working with Scheduler Tables 29 of 153

Figure 3.8: Special schedule calendar.

This calendar features are optional, but when you select them, this calendar will
override week day list and holiday filtering. For example, when IDAO is checked,
the workload will only be scheduled on every initial working day after off day
(Saturday, Sunday or holiday), regardless what you check on valid week day list
and holiday options.

These calendars are accompanied by their exclusion which is also considered as
special calendar. This means, schedule will be done normally except on checked
special day. When that day is reached, workload will not be scheduled regardless
what you checked on valid week day list and holiday options. For example, when
FWWD exclusion option is checked, workload will be scheduled normally every
day depend what you check on valid week day list and holiday options. When
the final week working day is reached, however, workload will not be scheduled.

Special calendar and its exclusion are mutually exclusive. If any of special
schedule calendars column are checked, you may not check anything in the
exclusion column. The panel will prevent you to do so. Hence you must a tricky
way when you need to combine special schedule calendar and its exclusion for a
workload. For instance, for workload that only runs on IDAO except when fall on
the same day with IMWD, you can not just select IDAO and exclusion of IMWD.

To solve such case, you need a dummy workload to be scheduled everyday
except on IMWD. Then, schedule the real workload only on IDAO and place it as
successor of dummy workload Hence, when IDAO is reached, the real workload
is triggered by dummy workload except when that day is also IMWD.

If you prefer not to use dummy workload, you need to insert a rexx program step
on top of the workload (job or STC) to evaluate whether that day is IMWD using
zJOS provided function zjcal(). If zjcal(‘IMWD’) return ‘Y’, produce a certain
return code to abort subsequent steps by using COND= keyword on second step.
Then schedule the workload only on IDAO.

If you prefer not to user COND= keyword which need effort to modify each step,
you may issue CANCEL command within inserted rexx program. The following
code example shows how simple your rexx should be.

If zjcal(‘IMWD’) = ‘Y’ then,
 X = zjcmd(‘CANCEL jobname’)

30 of 153 3. Working with Scheduler Tables

Implementing complex scheduling mechanism might need you to be smarter and
more creative, instead of just specifying entry definition. Sometime you need to
combine dummy workload and inserted rexx program steps, or even rexx
program in separate jobs. zJOS provides some useful rexx functions to help you
code very simple rexx programs to do a big matter on scheduling mechanism.
You can issue console message (zjwto() function) for triggering as well as WTOR
(zjwtor() function) or even “wait for TOD” (zjwait() function) to delay the workload.
Be aware, unless zJOS/Sekar is used to perform automatic reply, using WTOR
could break automation concept as it need human intervention to reply. If you
don’t license Sekar, to keep everything automatic, you got to code another rexx
program to capture WTOR message by using zjset() function which need to be
brought up prior to WTOR message occurrence.

IDAO – initial working day after off

IDAO is the first working day either following week-end (Saturday and Sunday) or
holiday. Commonly, Monday is an IDAO, except holiday. If Monday is a holiday,
Tuesday is then becomes IDAO. If Wednesday is also a holiday, then Thursday
is considered as another IDAO. After holiday must be an IDAO except for Friday
which is followed by week-end.

IWWD – initial week working day

IWWD is the first working day of week. Unless holiday, Monday will always be
an IWWD. Unlike IDAO which can be happened more than once a week, IWWD
always happens once a week. The first IDAO in a week is an IWWD. If there is
a second IDAO, it will not be considered as an IWWD.

IMWD – initial month working day

IMWD is the first working day of month. If the first day of month falls on Sunday,
then IMWD falls on the third day (Monday) unless that day is holiday. If IMWD
falls on Monday, IDAO and IWWD must also be fall on the same day.

EMON – end of month

EMON is the last day of month. For example, in October 2008, EMON fall on
31st day. EMON is the exact day which varies in each month and especially in
February depends on whether the year is leap year.

FWWD – final week working day

FWWD is the last working day of week. Commonly, Friday is a FWWD unless
holiday. When Friday is a holiday, then FWWD is shifted on Thursday. Like
IWWD, FWWD also once a week.

3. Working with Scheduler Tables 31 of 153

FMWD – final month working day

FMWD is the last working day of month. You should not confuse with end-of-
month day. Unlike EMON, FMWD will not happen on the off day (Saturday,
Sunday or holiday). In some places, official month-end day is FMWD, instead
of EMON.

33..22..44 Crossed-Date (Midnight) Handling

Normally batch operation is done in the night which possibly crosses between 2
days at 00:00:00. Workloads which run before 00:00:00 normally do not really
matter since operation calendar still in effect as current calendar. Workloads,
however, which run after 00:00:00 mean, run on the next day although still in the
same operation calendar. In such case, you must carefully consider schedule
characteristic of each workload. Some workloads may need to be consistently
scheduled with operation calendar. For example, if current operation calendar is
end-of-month (EMON), once 00:00:00 clock is reached, the day is no longer end-
of-month. Nevertheless, current operation calendar is still for EMON. Workloads
that are scheduled only for EMON must run although the actual day is no longer
EMON. More over, EMON could be immediately followed by FMWD if the day
next to EMON is working day. Hence, FWWD workloads could unexpectedly run
if schedule is improperly setup.

To avoid unexpected schedule problem, you must consider using option to force
zJOS/Puspa to override current calendar with operation calendar. This option is
placed in scheduled-workload entry detail panel as shown in figure 3.6 and for
clearer, is zoomed as shown in figure 3.9 below. In the panel stated “calendar is
verified once at the time schedule cycle is started”.

The effect of this option is not general. Rather, it only effective for workload with
this option checked. When this option is selected for a workload, zJOS/Puspa
verifies calendar once at the time schedule cycle is started (.SCD START
command is issued) and retains it as operation calendar for that workload.

Figure 3.9: Option to force operation calendar effective during schedule cycle.

32 of 153 3. Working with Scheduler Tables

Workloads which are scheduled with holiday option unchecked or with selected
week day list, or with special schedule calendars such as IDAO, IWWD, IMWD
etc. or their exclusion, normally and logically need to be consistent with operation
calendar. Hence, this option must be checked on. Avoiding this option could
causes unexpected overlapping schedule.

33..22..55 Exception Handling

The last portion of scheduled-workload entry definition is exception handling.
This offers chances you to ask Puspa performs certain action when an exception
is encountered while a workload is being processed.

The perfect schedule should have complete exception flow for recovery on each
scheduled workload. But, to prepare them, you need very long time to learn the
behavior of each workload. To speed up scheduler setup, you need to prioritize
complete exception flow only for certain workloads which already known unstable
on day-to-day operation. The rest, which are supposed more stable workloads,
might only need simple exception handling using this facility.

Exception handling facility works based on system and user condition codes.
Any value of system and/or user condition codes can be used to decide whether
workload got exception.

Exception definition

The first thing you should do, is defining exception itself. What condition you
consider as an exception? For example, JOB01 is considered as exception
when it is ended with CC > 16, as shown in figure 3.10. Note that CC is coded
in hexadecimal notation.

Figure 3.10: Considered as exception when CC > 16

CC for Abend exception

When you select 7 (AB) for exception definition, workload will be considered
exception when abnormally ended. Without specifying CC value or fill it with 000
means that any abend code is considered as an exception, as shown in figure

3. Working with Scheduler Tables 33 of 153

3.11. However, if you specify a certain value in CC field, then only abend with
that CC is considered as an exception, as shown in figure 3.12.

Note that abend code (system CC) is greater than user CC. Therefore, when you
define exception with GE or GT operator, abend code will also comply the rule.

Figure 3.11: Any ABEND is considered as exception

Figure 3.12 shows that you defined abend with system code 0C4 is an exception.
Abend other than 0C4 will not trigger exception action.

Figure 3.12: Only ABEND 0C4 is considered as exception

Simple action against exception

Once exception was defined, next is defining which action got to be taken when
exception is encountered. Puspa offers you to choose one of 7 provided simple
actions as shown in figure 3.13.

1. Normal schedule
2. Issue command
3. Refresh scheduler
4. Halt scheduler
5. Restart scheduler
6. Hold the workload
7. Cancel and hold the workload

Normal schedule (option 1) means no action. This is the default. Regardless
exception definition you have prepared, no evaluation is performed. Schedule
continues in normal way. If you have prepared complete schedule flows for a
workload, you might not need simple action here, by leave its default as no
action.

34 of 153 3. Working with Scheduler Tables

Be aware, handling exception here may override schedule flow for a workload.
For example, workload JOB1 is set to trigger JOB2 when CC = 0 and trigger
JOB3 when CC not 0, JOB3 will never be triggered if you define exception 2 (not
equal) for CC = 0 with simple action hold (option 6) or hold and cancel (option 7).
Because, when JOB1 ended with CC not 0, JOB1 is then placed in hold status
and Puspa ask you to fix it. Workload in hold status will not trigger its successors
until it is fixed and rescheduled and ended without exception.

Figure 3.13: List of selectable simple actions against exception

Issue command (option 2) means specified text in cmd action field is issued as
a command when exception is encountered. Figure 3.14 gives example that
when workload got abend 0C1, is considered exception. Action is to send a
message “JTEST03 abend 0C1” to userid IBMUSER.

This action option does not affect schedule flow as the workload is not placed in
“error state”. Schedule flow will still affected by returned system and/or user CC.
If no successor is matched with returned CC, schedule flow of this workload then
stuck without notification. Hence, command should something that alert user
regarding this exception. Once recognized, user/programmer can fix it, then you
can reschedule it by using provided rerun facility.

Note that such exception definition does not prevent its successors from being
scheduled as long as returned CC is complying to trigger them. Use option 6 or 7
if you prefer to hold its schedule flow until it got fixed.

Figure 3.14: Command text must be specified when issue command action is selected

3. Working with Scheduler Tables 35 of 153

Refresh scheduler (option 3) means current active schedule table is refreshed
when exception is encountered. This means, current scheduling process is
terminated and cleanup all collected workloads status information, hence Puspa
back to ready state. This is a very serious action. Unless you really expect such
situation, you should never select this action.

Halt scheduler (option 4) means current scheduling process is halted when
exception is encountered. This means, current scheduling process is suspended
until you ask Puspa to resume the suspended workload or restart from a certain
workload which has been finished. When it happens, operator console is notified
that scheduling is halted.

Restart scheduler (option 5) means current active schedule table is refreshed
and immediately start next schedule cycle when exception is encountered. This
is more serious than refresh action (option 3). Unless you really expect such
situation, you should never select this action.

Hold the workload (option 6) means to place this workload in “error state” and
issue message to notify user to fix it. Error state doesn’t mean that workload is
immediately terminated. Workload rather, continues on its own logic to finish.
Puspa however, is no longer listening its progress status. . During in error state,
schedule flow of this workload is suspended until its fixed version is rescheduled.
When the workload is fixed, you can manually start it either in your own way or
using “rerun” facility by typing ‘X’ in scheduler log panel. Once the workload is
started, schedule flow of this workload is then resumed.

This option (6) is the most popular simple exception action, especially for newly
inserted workload in the schedule table. Before you really familiar with behavior
of the workload, this action is the best way to learn. Later when you its behavior
is clearly known, you can setup alternate schedule flow for recovery.

Cancel and hold the workload (option 7) means cancel the workload and place
it in “error state” and issue message to notify user to fix it like option 6. During in
error state, schedule flow of this workload is suspended until its fixed version is
rescheduled. When the workload is fixed, you can manually start it either in your
own way or using “rerun” facility by typing ‘X’ in scheduler log panel. Once the
workload is started, schedule flow of this workload is then resumed.

This option (7) is the second most popular simple exception action, especially for
newly inserted workload in the schedule table. If you don’t need this workload to
finish, use this option instead of option 6. Normally this option is useful for multi-
step jobs or STCs to prevent them continue to finish all steps when got exception
in early step.

36 of 153 3. Working with Scheduler Tables

3.3. Triggering Events Table

Triggering events table is a list of event definitions of each predecessor to trigger
scheduling process. Normally, triggering events are events generated by some
workloads to trigger their successor workloads. Figure 3.15 shows appearance
of triggering event table for a workload. Panel only displays selected entries
associated to selected workload. In this figure, panel only displays all trigger
events associated to workload JTEST14 on system MFOC.

Figure 3.15: Triggering-event table panel

33..33..11 Managing Triggering Events Table

Figure 3.16 below shows brief description of each field of triggering event in
predecessor list panel. Information displayed on panel of triggering event table
describes triggering logic mechanism applied for a scheduled workload. Grp
column describes triggers grouping indicated by 2-digit group id. Predecessors
with the same group id are grouped to obtain a single group triggering decision.
Condition column describes how each particular trigger event is generated.

3. Working with Scheduler Tables 37 of 153

Figure 3.16: Managing triggering-event table

As all triggering events entries for all defined scheduled workload are contained
in a single table, table is actually much larger than its appearance on the panel.
However, panel only displays a portion of entries, which associated to selected
workload. Besides, this makes you easier to manage and understand the logic
of triggering mechanism applied to each workload.

The panel is scrollable. If the table is larger than screen size, you have to scroll
it up and down to reach the position of entry you want to review. As standard
ISPF convention, use F7 and F8 keys to navigate scrolling.

Selection (S) column

Second column of the table region on the panel is a selection column. This is the
column of input fields into which you can enter action character to manage each
entry of table. Valid action characters are:

38 of 153 3. Working with Scheduler Tables

• S – Select particular triggering event entry in detail as in figure 3.21.
o This gives you chance to update the detail of selected event entry

• D – Delete particular entry from the table.
• A – Add a new event entry to the table.

o Selected entry is ignored, then obtains detail event entry panel with
all field blanks and ask you to fill up.

o This can also be done from action-bar selection menu.

Action-bar

Action-bar menu consists of 2 selectable actions as shown in figure 3.17. Choice
1 is to add or insert a new entry. This function is similar as if you enter action
character A in selection. However, when the table is empty, for example is newly
created table, the only way to add the first entry is via this action-bar choice.

Figure 3.17: Action-bar menu of triggering-event table panel

Choice 2 is to exit from triggering event table panel and return to previous panel.
This is similar as of you hit F3 key or issue END command. Changes on the
table are saved prior to exit.

Function keys

Function keys consist of 5 keys available to navigate the panel:

• F1 – obtain help panel or window
• F3 – save and close the table
• F7 – scroll up screen
• F8 – scroll down screen
• F12 – abort all changes and close the table.

Grp column

This column lists triggering event group-id. To build triggering logic, triggers are
grouped and each group identified by 2-digit numeric 00 to 99. Group-id is
decided by you when entering a new trigger event source definition. Schedule
for a workload is granted only if all associated triggering-event groups comply the

3. Working with Scheduler Tables 39 of 153

triggering condition. Compliance of each group is ANDed each other to produce
final compliance. The final compliance is TRUE only if each group is TRUE.

Trigger column

Column labeled as trigger lists triggering source names and types. Triggering
source name is name of source of event, which is used to trigger the scheduling
process. Trigger source is normally other scheduled workload in the same
schedule flow, which is a predecessor workload. However, it can also come from
outside scheduler, which is an external workload.

Triggering source type is type of source. It can be batch-job (JOB), system-task
(STC), command (CMD), message (MSG), dataset access (DSA) or dataset
release (DSR). MSG, DSA and DSR source types always external workload,
since they can not be scheduled as workload.

System column

Lists name of the system on which trigger event source is running, or trigger
event is generated. See explanation on the par 3.1.

Stepname column

For trigger source type of batch-job and STC, Puspa supports 2 types of event
for triggering, end-of-step (EOS) and end-of-job (EOJ) events. The use of EOS
event in scheduling mechanism is the best way to achieve optimum scheduling
path. It is known as step-level scheduling mechanism for pipelining operation.

EOS event is identified by job and step names. Whereas, EOJ event is identified
by job name only. Hence, if step name is specified, means EOS event is used
for triggering. Otherwise, EOJ event is used. There are 2 types of step names,
job-step name for batch-job, and procedure step name for STC. Batch-job which
calls procedure can have both step names.

Condition column

Compliance of each particular triggering source is evaluated based on condition
yielded by either EOJ or EOS event. Condition evaluation is done by comparing
returned condition-code (CC) and specified CC in trigger source definition. When
comparison yields logical-TRUE, then triggering event is stated as complied.

Example

One of trigger source entry in figure 3.16 is job JADI003 step JADIS04 in group
00. It compliant only if jobstep JADIS04 of job JADI003 is ended with CC = 000.

40 of 153 3. Working with Scheduler Tables

33..33..22 Triggering Logic Mechanism

As a modern scheduling system solution, zJOS/Puspa provides almost unlimited
complex triggering logic mechanism. Decision whether a workload is scheduled
can be based on complex mathematical combination among condition-code (CC)
resulted by all associated triggering event sources. Technically, trigger sources
are grouped into a necessary number of groups.

Compliance of a trigger group is decided based on logical OR relationship among
all individual triggering entries within this group. Hence, a group is considered
complied only when at least one of triggering entries within the group is complied.

Final compliance is decided based on logical AND relationship among all groups.
In other word, whole triggering is complied only when all triggering groups are
complied. Such method is suitable to build either simple or complex triggering
logic mechanism. Simple triggering mechanism can be established in either 2
way:

� OR-based condition evaluation -- no grouping
� AND-based condition evaluation

OR-based Condition Evaluation

OR-based condition is group triggering decision which is granted if at list one of
particular trigger event comply triggering decision.

Figure 3.18: OR-based (simple) triggering mechanism

If you desire Puspa to grant a workload for scheduling based on at least one of
triggering event entries, then you can easily just ungroup the entries. This means
put all entries into a single group. Puspa then evaluate until one triggering event
entry is complied. Once complied entry is encountered, Puspa then straightly
grant the workload without waiting all other unfinished entries, unless schedule is
constrained by TOD (e.g. when it happens earlier then specified start-time).
Figure 3.18 shows example of OR-based triggering mechanism. Workload job
JTEST02 is granted for scheduling if either workload job JTEST01 jobstep
STPSATU comply CC < 8 or job JTEST00 jobstep DUA comply CC = 0.

3. Working with Scheduler Tables 41 of 153

OR-based triggering mechanism can involve almost unlimited triggering entries.
You can logically define 1 up to 32,767 triggering event entries for a single group.
Hence, it sounds the only limit is storage capacity allocated for Puspa schedule
table in DIV/dataspace.

AND-based Condition Evaluation

Other simple triggering mechanism is AND-based condition evaluation. If you
desire Puspa to grant a workload for scheduling only if all defined triggering
event entries are complied, you can easily just put each individual trigger entry
into a separate group. This means each group only contains one entry. Puspa
then evaluates all entries, and workload is granted only when all entries are
complied.

Figure 3.19 shows an example of an AND-based triggering mechanism. This is
also a simple triggering. Workload JTEST07A is granted for scheduling only if
workload JTEST05A comply CC = 0 and JTEST06 comply CC < 4 and JRMT002
just ends. Note that CC for EOJ event is maximum CC.

Figure 3.19: AND-based (simple) triggering mechanism

Since group-id is 2-digit numeric from 00 up to 99, you can only define maximum
100 groups for a single scheduled-workload. Although 100 is a small number
compared to 32,767, this number is more than enough to build multiple groups of
trigger event table in most scheduling environment.

However, incase you need more than 100 triggering event entries; you can
smartly simulate some dummy workloads as necessary. For example, JOB1
needs 150 triggering event entries (AND-based). You can then provide dummy
workload JOB1A and JOB1B which each contains IEFBR14. Then you define
first 100 triggering event entries for JOB1A, and the rest (50) for JOB1B. Finally,
you define workload JOB1A and JOB1B as triggering entries for workload JOB1.

42 of 153 3. Working with Scheduler Tables

33..33..33 Complex Triggering Logic Mechanism

Figure 3.20: Complex triggering mechanism

Triggering event table as shown in figure 3.20 describes complete triggering logic
mechanism applied for a scheduled workload. Figure shows triggering logic for
workload JCOBA06X on system MFOCSYS1. Table consists of 2 groups of
triggering event sources:

� Group 00
1. EOS event of job JADI003 step JADIS04 on system

MFOCSYS2 � complied when CC = 000
2. EOJ event of job JRMT003 on system MFOCDRC � complied

when CC < 00C
1. Compliance of group 00 = compliance of entry 1 OR 2

In math stated as: (CC00,1 = 0) OR (CC00,2 < 12)
� Group 01

1. EOS event of job JCOBA05 step LISTSYS1 on system
MFOCSYS1 � complied when CC <= 004

2. EOJ event of job JADI002 on system MFOCSYS2 � complied
when CC < 010

2. Compliance of group 01 = compliance of entry 1 OR 2
In math stated as: (CC01,1 <= 4) OR (CC01,2 < 16)

Final compliance = compliance of group 00 AND 01

Hence in mathematical notation, workload JCOBA06X on system MFOCSYS1 is
scheduled only when:

((CC00,1 = 0) OR (CC00,2 < 12)) AND ((CC01,1 <= 4) OR (CC01,2 < 16)) = 1

Complex triggering mechanism can accommodate large amount of triggering
entries. Based on standard zJOS programming logic, Puspa offers up to 100
groups, where each group can accommodate 32,767 entries. Hence total entries
for a single workload are up to 3,276,700. This is a really huge number for such

3. Working with Scheduler Tables 43 of 153

purpose. However, incase you need more than 3,276,700 (although it sound
impossible), you can smartly simulate some dummy workloads as predecessors
as explained in previous par.

3.4. Triggering Events Entry

When you enter S in selection column of triggering events table as in figure 3.15
and press enter-key, selected entry is then displayed in new panel as shown in
figure 3.21.

Figure 3.21: Triggering event entry

The same panel is also displayed when you add/insert a new entry, except with
empty fields.

44 of 153 3. Working with Scheduler Tables

Heading of the panel shows targeted scheduled workload name and system on
which it is going to be scheduled. This to avoid you lost the track when updating
the entry.

33..44..11 Triggering Event Identifier

Second part of triggering event entry panel is identifier of the entry, as shown in
figure 3.22. It consist of group-id, event source name, name of system on which
event source is running, type of event source and step names for event source
type of batch-job and STC only. Description of each field already explained in
par 3.3.

Figure 3.22: Triggering event entry identifier

Trigger Group-id

Two-digit numeric from 00 up to 99 specifies into which group this event entry is
assigned. To alter it, you can just overtype it.

Trigger event name

Name of triggering-event source, which depend on the type of source. For
batch-job (JOB) and STC status events, this name must be its valid jobname.
Event will only be captured from JOB or STC with name match to the specified
name here.

For dataset access (DSA) or dataset release (DSR) events, name can be name
of JOB or STC of which accessing or freeing specified dataset. By using such
true name, DSA or DSR event originated from specified dataset name will only
be captured when accessing or releasing workload name is matched with the
specified name here. You must check on the check jobname checkbox option to
notify Puspa that specified name is true name.

For DSA and DSR events, however, you can also specify any non-true name just
to identify the event. By checking off the check jobname checkbox option, Puspa

3. Working with Scheduler Tables 45 of 153

will capture all DSA or DSR events from specified dataset name regardless the
name of accessing or releasing workload.

For message (MSG) and command (CMD) events, this name is just a word to be
used by Puspa internally to identify the event.

System name

Name of system on which triggering event source is running. See explanation on
the par 3.1. To alter it, you can just overtype it.

Trigger event type

Puspa support 6 types of triggering event source; which are:

1. (JOB) Batch-job
2. (STC) System-task
3. (MSG) Message
4. (CMD) Command
5. (DSA) Dataset access
6. (DSR) Dataset release.

Batch-job, STC and command events can either originated from other scheduled
workload, by means the predecessor, or from external workload which is outside
scheduling system. Whereas message source must be external workload, since
Puspa does not support workload type of message.

DSA and DSR are also external trigger event sources which are actually just
system events instead of workload. DSA event occurs when dataset is accessed
(allocated or opened). DSR event occurs when dataset is released (de-allocated
or closed and freed). In certain cases, DSA and/or DSR can be used to simplify
a schedule flow. For inter-workload dependencies that are caused by interleaved
access to a dataset, the use of DSA and DSR may more efficient and simpler
than jobstep based flow.

Job/STC step names

Step names applicable only for batch-job (JOB) and STC status event source
types. The use of step names indicates the scheduling uses EOS event, instead
of EOJ. This is a smart way to establish pipelining workload operation as
explained in chapter 1 par 1.3 which can potentially shorten batch window time.
There are 2 types of step names; job-step name and procedure-step name.

Job-step name is a name of EXEC card within a job stream which directly related
to JOB card. Jobstep name is applicable only for batch-job and is the real step in
batch processing flow.

46 of 153 3. Working with Scheduler Tables

Procedure-step or proc-step name is a name of EXEC card within a procedure
stream which related directly to PROC card. Proc-step name is applicable for
either STC or batch-job. Step in STC always identified by proc-step name and is
the real step in task processing flow.

Step in batch-job can only be identified by jobstep or combined of both jobstep
and proc-step. A batch-job which does not call procedure always uses jobstep
only to identify its processing step. A batch-job which calls a procedure, uses
combined of both jobstep and proc-step to identify its processing step. You must
aware such understanding prior to implement EOS-level pipelining workload
scheduling.

MSG/CMD text or DSN

This field is applicable for MSG, CMD, DSA or DSR event types only. For MSG
or CMD type of event, you must specify a string here which to be used by Puspa
to capture message or command. The string can be full or part of message or
command text. Comparison is done exactly based on length and content of string
you specified here. Hence, don’t put quotes unless the target is also quoted. No
wild card is allowed. Although the target is longer then specified string, you do
not need to worry as long as specified string represent a unique portion of the
targeted message or command text. Trailing blank in this field will be ignored. Be
aware that comparison is always in uppercase mode from the first character
position.

For DSA and DSR event, this string must be targeted dataset name. Hence you
must follow dataset naming rule. Specified dataset name here must be a full
name of dataset, instead of portion and no quotes are allowed. No PDS member
name is allowed. Maximum length of dataset name is 44. For VSAM dataset,
use cluster name.

4. Controlling Puspa 47 of 153

Chapter 4 Controlling Puspa

As a modern automatic scheduling system solution, Puspa has powerful facilities
to manage system workload operation. Most of interaction activities which usually
performed by operators can be handled by Puspa. Combined with automation
system or event management (e.g. Sekar), automatic spool/report distribution
(e.g. AutoXfer) and tape management system coupled with robotic feature, you
would have fully automated system which drastically reduces human (operators)
interventions. Though, it does not mean your system can totally operate itself. It
will still need human interventions, at least to control the automation program
(e.g. Puspa)

Controlling Puspa is quite simple. You only need to interact with zJOS address
space via console or via TSO/ISPF interface. Later when you already familiar
with zJOS-XDI, you might automate some control interactions using Sekar.

4.1. Status Information

When you issue ”.STATUS” on console or just press enter on zJOS control panel
in XDI session in TSO, zJOS operation status information is then displayed. On
console, status information appears as follow:

Component- Stat- -Agent-- Tbl Works -Usage-- #dayX
Sekar (EMS) UP ACT(SSI) IN 00005 LICENSED none
Puspa (SCD) DOWN INACTIVE OUT 00000 **DEMO** ..?!
AutoXfer UP ACTIVE IN 00000 **DEMO** ..?!
Net-Server DOWN INACTIVE N/A 00000 standard none
zJOS XDI statistics:
Config: SSN=XDI Load=LPA COM=0802A3A0 WSA=00C42F90
Subtasks: Major=009 EVX=000 SVR=000 SCD=000 Abn=000
Network agents: total=0000 active=0000 local=N/A
Network traffic: Snd=00000000 Rcv=00000000 Que=0000 0
JES I/F: Up=Y PIT=Y Conn=Y Irdr=Y FR(5=N,12=Y,22=N)
Queues: ARQs=00001 SQBs=00000 EOTs=00000 RMG=0000 0
State: NORMAL Parm: SYS=00 EMS=00 SCD=00 DEST=00
SCD: Lib=O O=EVXMS M=EVXMS Pos=EVALUATE-JMR EnQ=FREE

On TSO/ISPF XDI session, zJOS status information appears as in figure 2.1.
Both are similar except for the following additional rows showing statistics of DIV
utilization for Puspa (scheduler) which only applicable in zJOS control panel on
TSO/ISPF XDI session:

48 of 153 4. Controlling Puspa

SCD Free-pool: SCT=009588 TRG=0199479 EOT=050000 0
SCD Used-pool: SCT=000412 TRG=0000521 EOT=000000 0
SCD Curr-pool: SCT=000024 TRG=0000047 EOT=000000 0

Status information consists of 2 major information areas:

1. Product status information
2. Statistic information

44..11..11 Products Status Information

Products status information is information regarding each specific zJOS-XDI
product or component. There are 4 components bundled in zJOS-XDI package
and run together in XDI address space:

• Sekar – event management system (zJOS product)
• Puspa – automatic scheduling system (zJOS product)
• AutoXfer – automatic spool distribution (XDI product)
• Net-server – socket server program (zJOS standard feature)

Products status information is shown as a simple table which is the first part of
status information, as shown below:

Figure 4.1: Product status information

State column

The above information describes whole status of zJOS-XDI products. Status of
Puspa is indicated by reversed red color. State column describe whether the
product UP or DOWN. UP indicates the product is active, and DOWN indicates
the product is inactive. You must activate the product if you want it work for you.
Normally Puspa is automatically up and ready when you start zJOS address
space. Incase Puspa not automatically up, issue .SCD INIT command or INIT
request on control panel (figure 4.2) to make it up and ready.

4. Controlling Puspa 49 of 153

Figure 4.2: Initializing Puspa to bring it ready

Agent column

Agent column in control panel (figure 4.3) is shown as second sub-column under
state column. It shows current internal agent status. When Puspa up, its internal
agent may READY, ACTIVE or PASSIVE. When PUSPA down, internal agent
is INACTIVE.

Figure 4.3: Internal agent status (2nd State column)

READY means Puspa is well prepared to perform scheduling activities. Tables
are loaded, job status listeners are enabled its connection to JES is established.
Any time you enter START, Puspa will start all scheduling process.

ACTIVE means that Puspa has been starting scheduling activities. Workloads
scheduling is being progress. This state is triggered by START request. Puspa
remains in active state until whole schedule cycle complete. However, it can be
changed immediately back to ready state by issuing REFRESH request, and
then current scheduling progress is terminated. Hence, you should do it, unless
really want to abort current schedule process.

PASSIVE means that scheduling progress has been halted, either completely
done or got serious problem. While in passive state, scheduler will not be able to
back to active state until you refresh it. Once Puspa is refreshed, it then changes
to ready state, and you can request it to start.

50 of 153 4. Controlling Puspa

Table column

This column shows status of parameters table, which is indicated as “loaded” (in
console: IN) or “unloaded” (in console: OUT). Loaded (IN) indicates schedule
table is already loaded, and unloaded (OUT) indicates that table is not loaded yet
or unsuccessfully loaded.

For Puspa, if status is UP, table must be IN. If you find Puspa status UP with
table OUT, issue .SCD RELOAD command on console or RELOAD request on
control panel (figure 4.4) and recheck the status. If table remains OUT, you must
recheck Puspa parameters using XDI ISPF interface as explained in chapter 3.
Make sure you have already prepared Sekar parameters. If all event table and
all associated action tables have already been prepared, please recheck to make
sure you address the 2-digit suffix currently assigned for Sekar table correctly in
XDI system parameter. If table and its suffix are correct and you still got the
same problem, try recycling Puspa. Issue .SCD STOP, then issue .SCD INIT .
Please call XDI support personnel immediately if you find the problem persist.

Figure 4.4: Request Puspa to reload schedule table

Work column

This column shows cumulative number of works on the current day since 0:00:00
clock. For Puspa, number of works represent number of workloads has been
scheduled. It does not matter if Puspa is permanently or yearly licensed. It only
impacts during demo period, where Puspa available for you only 30 works per
day. When this work limit is reached, although shown remain up and active,
Puspa will ignore all subsequent workload until next day.

Usage column

This column describes whether the product is in demo period or already licensed.
DEMO indicates the product is in demo period and the key is expired and will
be limited for 30 works per day. Ask XDI support personnel for renewal.

LCNSD/YR indicates the product is yearly licensed. In this kind of usage, you
have to ask XDI representative personnel to renew the product key once a year.

4. Controlling Puspa 51 of 153

LICENSED indicates the product is permanently licensed. In this kind of usage,
you don’t need product key anymore. Product will always available for you unless
you change the hardware or system identifier. Hence, if you license XDI product
permanently, you have to notify XDI representative personnel when you change
your hardware or reconfigure you system.

Day column

On console appears as #dayX, is number of day’s product key to expire. This is
an important notice for yearly licensed usage only. If product is permanently
licensed, this column is shown as ‘none’. Non permanent licensed users should
pay attention to this information. You will be warned when #dayX is less than 30
days.

44..11..22 Statistics Information

Statistics information is recorded statistics data regarding activities of each
important zJOS-XDI task and/or routine in XDI address space.

Config: SSN=XDI Load=LPA COM=0802A3A0 WSA=00C42F90
Subtasks: Major=009 EVX=000 SVR=000 SCD=000 Abn=000
Network agents: total=0000 active=0000 local=N/A
Network traffic: Snd=00000000 Rcv=00000000 Que=0000 0
JES I/F: Up=Y PIT=Y Conn=Y Irdr=Y FR(5=N,12=Y,22=N)
Queues: ARQs=00001 SQBs=00000 EOTs=00000 RMG=0000 0
State: NORMAL Parm: SYS=00 EMS=00 SCD=00 DEST=00
SCD: Lib=O O=EVXMS M=EVXMS Pos=EVALUATE-JMR EnQ=FREE

Configuration line

This is actually not a statistic, instead, just show current internal configuration of
zJOS-XDI in XDI address space. Shown in this line, subsystem name (SSI) for
zJOS-XDI as assigned by SSN keyword in XDI procedure or in START command
when XDI was started. On the above example shown SSI=XDI, which is the
default.

COM and WSA show address of current communication and working storage
area control blocks. These are shown here for debugging purposes only.

Subtasks line

These are statistics which describes current active zJOS subtasks within zJOS
address space. Major=nnn shows number of major subtask which are currently

52 of 153 4. Controlling Puspa

active. Normally zJOS is supported by 10 major subtasks when run on a single
system, or 11 major subtasks when run on networked systems.

EVX=nnn shows number of active event executor minor subtask which is belong
to Sekar (EMS). It can be tens or even hundreds depend on current workload.
But, since most of EVX minor subtask is typically once work task, it up in very
short time, hence you will find EVX looks likely always 0.

SVR=nnn shows number of active server’s worker. When automation was setup
for networked systems, zJOS server must up to handle connection with all
agents from all connected hosts. Server is typically a concurrent socket server,
which must able to interact with more than one agent at the same time. To do
so, worker subtask is assigned for each connection. Hence, nnn here represent
number of currently connected agents. Server is a major subtask of which main
function is port listener. Whereas, server’s worker is a minor subtask.

SCD=nnn shows number of active scheduler minor subtasks which is belong to
Puspa. It can be tens or even hundreds depend on current workload. But,
since most of SCD minor subtask is typically once work task, it up in very short
time. Because there is only one SCD minor subtask which is assigned to be up
along with scheduling activities, hence you will find SCD looks likely always 1
when Puspa is working.

Abn=nnn shows cumulative number of abended subtasks since zJOS address
space was started. Each zJOS-XDI task and/or routine is accompanied with
ESTAE type recovery handler. Hence, you should not worry with this indicator.
It just for XDI supports personnel to inform R & D site for future enhancement.

Net-agent line

This is statistics of network connection, which represent number of generated
network connection control blocks (NETCCB). When Sekar EMS table is loaded,
and when Puspa schedule table is loaded, number of non-local system names is
recorded. When zJOS-XDI Server is activated, it then generates NETCCB, one
for each non-local system. Total number of generated NETCCBs is shown as
total=nnnn. Active=nnnn shows number of NETCCBs currently being used for
agent connection. Hence, active=nnnn represent number of currently connected
agents. It must also the same as shown in SVR=nnn in subtask line.

Network traffic line

This is statistics of server-agent interaction. Each transaction accompanied by
network access control block (NACCB) to hold send/receive control status and
data being sent or received. R=nnnnnnnn (on control panel: Rcv=nnnnnnnn)
shows number NACCB received by server. S=nnnnnnnn (on control panel

4. Controlling Puspa 53 of 153

Snd=nnnnnnnn) shows number of NACCB sent to agents. Q=nnnn (on control
panel: Que=nnnn) shows number of NACCB which still in queue for service.

Queues line

This is actually workload statistics. In normal situation, all of these queues are
zeroes, which means all workloads are processed instantly. When automation
workloads are too high, for example too many events are being processed (for
Sekar), and/or too many jobs are being scheduled (for Puspa), then might some
workloads must be queued.

Such situation can also happen when system too busy. For example, in peak
time when the system is overloaded, all tasks are slowing down, including XDI
address space. Hence, it impacts zJOS work slower, which is causing some
automation workloads must be queued.

ARQ=nnnn shows number of action request queue blocks, which represents
number of currently queued action requests. This represents Sekar performance.

SQB=nnnn shows number of scheduler queue block, which represents number of
currently queued schedule requests. This represents Puspa performance.

EOT=nnnn shows number of end-of-task event blocks, which represents number
of currently queued job status events. This represents Puspa performance.

RMG=nnnn is for XDI internal R & D only.

SCD trace: O=EVX M=EVX Pos=ASID-STACK EnQ=FRE E

JES I/F line

This line shows JES (currently only support JES2) interface indicators, which
describes readiness of Puspa-JES interoperability. Up=(Y or N) indicates JES
state. PIT=(Y or N) indicates whether initiators are captured by Puspa.
Conn=(Y or N) indicates whether JES-Puspa connection is established. Irdr=(Y
or N) indicates whether JES internal reader is being allocated by Puspa. The
rest are for XDI internal R & D use only. All are managed by Puspa internal
agent. When Up=N, then all other indicators will be N.

Puspa is ready only when all indicators are Y. Otherwise, you must check
whether JES is not up. Bring JES up if so. If Up=Y (JES up) and any one of
other indicators is N, try stop Puspa and reinitialize it again. If problem persist,
please call XDI support personnel.

54 of 153 4. Controlling Puspa

SCD trace line

This is scheduler trace information, which is for XDI internal R & D only. When
you report problem with scheduler (Puspa) to XDI supports personnel, this trace
information should be reported as well.

4.2. Load Schedule Tables

Since DIV has been implemented for schedule tables, the way to manage tables
was changed. INIT, LOAD and RELOAD requests got different effect to Puspa.
In the past, INIT was to load currently addressed table and get Puspa ready for
work. LOAD was to just bring selected table onto memory and RELOAD was just
to reload currently addressed table onto memory. All were actually moving table
from PDS member on disk onto ECSA. The use of ECSA might affect the whole
system performance when it does not well prepared, since schedule table can be
very large.

As a modern scheduling system, Puspa should not put itself in risky situation,
even, should accommodate new mainframe technology as maximum as possible.
Puspa DIV was designed to avoid the use of ECSA and PDS. The use of ECSA,
which is a system high sensitive area, is replaced by shared dataspace. For large
schedule tables, this feature drastically reduces ECSA usage. Incase an
unexpected crash is happened, theoretically it won’t affect to the system.

Other positive side effect is reducing the use of PDS to keep schedule tables. As
PDS is easy to access, keeping sensitive data in PDS is not very good. Since
Puspa dataspace is DIV, which is backed up by VSAM LDS, you can strict
people viewing it. Besides, schedule tables in DIV are already in memory format
and the way I/O is performed uses paging I/O mechanism which is very efficient.

Since DIV has been implemented, you are directed to migrate your tables to DIV.
Once a PDS member is loaded onto DIV, you will never able to reload it, unless
you delete the loaded table on DIV first. For example, once XDISCD00 is loaded
onto DIV as “in-memory” table SCD 00, it won’t be reloaded when you issue INIT,
LOAD or RELOAD request. Rather, Puspa just switch to address SCD 00 as a
current table. The only ways to reload XDISCD00 is by deleting SCD 00 first, or
rename it to; let say XDISCD01 and SCD 01 does not exist, then load it. The
second load will be kept on DIV as table SCD 01.

Further managing Puspa tables is discussed in chapter 5.

4. Controlling Puspa 55 of 153

4.3. Navigate Schedule Flow

Once a schedule is started, process is then kept go on until the last workloads
are completely performed. Normally, when schedule flow has been perfectly
prepared, you do not need to do anything. Once the flow is completed, Puspa is
then entering passive state, is called a schedule cycle complete. Next cycle, you
just refresh the table by issuing REFRESH request, then start it again by issuing
START request.

In certain situation, however, you may need to halt scheduling progress. This
may happen when some workloads were changed or new workloads were added
in respond of business changes. For example, when a certain workload got
wrong data, because operator forgot to restore newly updated databases from
development system. You then decided to halt Puspa and give time to operators
to restore the databases. Afterward, you then let Puspa either to continue from
halted position (resume) or certain position you desire (restart).

44..33..11 Halting Schedule

To halt schedule flow, issue the following command:

.SCD HALT

On zJOS control panel, you can issue HALT request as shown in figure 4.5. You
can also use short form request H.

Figure 4.5: Request Puspa to halt schedule flow

In respond to HALT request, you will see 2 messages on the console as shown
in figure 4.6. Message DERSCS346I occurs immediately following HALT request
issuance. Puspa then takes some amount of time to find a workload which is
currently being scheduled or going to be scheduled. Once the workload is found,
message DERSCS347I occurs and schedule is then halted.

56 of 153 4. Controlling Puspa

Figure 4.6: Console messages in respond to HALT request

Figure 4.7: Puspa is being halted

On zJOS control panel, status of Puspa is shown as HALTED as in figure 4.7.
To halt schedule flow at a certain workload, issue the following command:

.SCD HALT JOB=jobname

On control panel, you can issue HALT request followed by jobname of workload
you desire to halt as shown in figure 4.8. Since the command slot length is only
10 characters which can not fit the argument, you must use short form H.

Figure 4.8: Request Puspa to halt schedule flow at certain job

The workload you address by jobname (for example JOBABCD) must be exist in
the schedule table. Otherwise, Puspa responds you as shown in figure 4.9.

Figure 4.9: Response when requested workload does not exist

Halted schedule is a condition that Puspa is not doing scheduling. Workload at
which the schedule process was started to halt is called halted workload. Halted
workload is not actually halted. Rather, its status is not monitored by Puspa, as
well as all its successors. All triggering mechanisms are disabled. No workload
is scheduled afterward. All Puspa major functions are entering idle state. Such
situation is then called as halted schedule.

4. Controlling Puspa 57 of 153

44..33..22 Resuming Halted Schedule

Resuming halted schedule means let scheduler continue working. The starting
point is always at halted workload. All triggering mechanisms are enabled for all
its successors. Then schedule operation is completely resumed.

To resume the halted schedule flow, issue the following command:

.SCD RESUME

On zJOS control panel, you can issue RESUME request as shown in figure 4.10.
You can also use short form request RES.

Figure 4.10: Request Puspa to resume halted schedule flow

44..33..33 Restarting Halted Schedule

Unlike resuming halted schedule, restarting halted schedule however, reactivate
schedule not at the position it was halted. If you desire to reactivate schedule
starting at a certain job or workload, then you must choose RESTART instead of
RESUME. The workload you address as the starting point must be a “finished”
workload. This means, the workload must be already terminated while schedule
was halted. Unfinished workload or workload which is not scheduled yet, can
not be used as starting point to restart halted schedule.

To restart the halted schedule at a certain workload, issue command:

.SCD RESTART JOB=jobname

On zJOS control panel, you can issue RESTART request followed by jobname of
workload you desire to halt as shown in figure 4.11. Since the slot length is only
10 characters which can not fit the argument, you must use short form R.

58 of 153 4. Controlling Puspa

Figure 4.11: Request Puspa to restart halted schedule flow at certain job

The workload you address by jobname (for example JOBXYZ) must be exist in
the schedule table. Otherwise, Puspa responds you as shown in figure 4.12.

Figure 4.12: Response when requested workload does not exist

4.4. Control Panel Commands

44..44..11 LQ - Shows ENQued Processes

Schedule tables are loaded in dataspace which is backed up by VSAM LDS by
using DIV technology. As scheduling process is internally done by several tasks
asynchronously, to guarantee the content of the tables safe, each access to the
table is tightly controlled. All read-only access can be done together at the same
time and controlled as non-exclusive sharing mode. Write access, however, can
only be done serially, which is controlled as exclusive sharing mode.

Some other shareable resources are also handled in the same way. Resources
which applicable only within zJOS address space are controlled locally. The
others which are shared as system level between zJOS address space, internal
agents and subsystem routines are controlled at system wide level.

4. Controlling Puspa 59 of 153

Use LQ command to check whether one or more processes are enqueued for a
certain resource. Figure 4.13 shows the response when LQ command is invoked.
As it was carefully designed, in normal condition, there should no task placed in
queue for significant time interval. When a queue is significantly held, major and
minor names of resource are displayed.

Figure 4.13: Sample of LQ command response.

Held queues for schedule table may indicate that some pointer fields are broken.
To avoid such case, make sure each schedule table is well organized.

44..44..22 CAL - Shows Current Month Calendar

Figure 4.14: Sample of CAL command response.

In most cases, calendar is a key factor in automatic scheduling. Puspa uses
calendar information as triggering decision factors, such as week day, holiday
and special calendars (IDAO, IWWD etc.). Once holiday table is loaded, it then
is combined with computer TOD calendar to produce day-to-day zJOS system
calendar which is referred as operation calendar. You can check current month
calendar by using CAL command in control panel as shown in figure 4.14.

60 of 153 4. Controlling Puspa

44..44..33 HOL - Shows Holiday Calendar

HOL command is to display currently loaded holiday calendar in control panel.
Use this command make sure that holiday table you have prepared in zJOS
parameter library is correctly loaded.

Figure 4.15: Sample of HOL command response.

5. Managing In-memory Schedule Table 61 of 153

Chapter 5 Managing In-memory
Schedule Tables

As mentioned in par 4.2 of chapter 4, Puspa uses DIV to load, keep and manage
schedule tables. As DIV is actualize by paging facility as a memory, Puspa
tables on DIV have characteristics as if they loaded on memory. To reach this
facility, you can either via choice 3 of action-bar menu as shown in figure 5.1 or
by entering PARM request as shown in figure 5.2, then stroke enter-key. A list of
in-memory schedule tables is then obtained as shown in figure 5.3.

Figure 5.1: Entering in-memory schedule tables management via action-bar choice

Figure 5.2: Entering in-memory schedule tables management via command request

Panel of scheduler table list (figure 5.3) was designed as shadowed window to
primary control panel, where product status still appears as background, instead
of heading.

62 of 153 5. Managing In-memory Schedule Table

Figure 5.3: List of in-memory schedule tables

5.1. DIV Capacity and Utilization

Major parts of panel are DIV global information and list of tables with statistics.
DIV global information consists of DIV capacity and current utilization as shown
in figure 5.4. This to inform you whether Puspa has already well tuned. The
best situation is when utilization of SCT, TRG, EVB and ACT are averagely 75%.

Figure 5.4: DIV capacity and current utilization

5. Managing In-memory Schedule Table 63 of 153

Higher than 75% is good only for settled system. For system which dynamically
growth, above 75% could be a critical situation. Meanwhile, utilization too low
indicates that the DIV is too large. It will affect in zJOS performance than
requirement.

Puspa control blocks

Capacity record shows you the capacity of Puspa. It's depend on how you setup
Puspa. There are 5 main Puspa control blocks to do an automatic workload
scheduling system. SCT represents a scheduled workload. Each SCT holds
one workload definition and operation status information. It very easy to estimate
how many SCT you need.

TRG represents a trigger event source. Each TRG holds trigger event source
definition and operation status information. Number of triggers for each workload
is very relative, depend on how triggering mechanism you desire. Hence you
need to study very seriously to have the optimum number of TRGs. It must not
less than you need. But, if it too large, will affect system performance.

EOT represents a job step. It is actually not one-to-one correlated to the number
of steps. EOT is actually a zJOS control block to hold end-of-task event status
information. But it is not placed on hold status, unless captured event is an end-
of-jobstep (EOS) event which comes from any source that associated with Puspa
(scheduler).

EVB represent a non-job event. It actually belongs to Sekar which is an event
management system (EMS), instead of Puspa.

ACT represents an action. It is actually belong to Sekar to hold action definition
and status information against an event. Since Puspa also has some action
definition, for example, against exception condition of a certain workload, so
Puspa could be need some ACTs. Puspa also use ACT to hold message and/or
command text of message/command type workload or trigger event source.

By default, zJOS is distributed with 10,000 SCTs, 200,000 TRGs, 500,000 EOTs,
100 EVBs and 1,000 ACTs. Total around 100 MBs space and expected suitable
to accommodate 10,000 scheduled workloads. You can customize this capacity
specification to accommodate your specific requirement.

5.2. Tables Statistics

Next part of the panel is schedule tables statistics. It lists all tables, from 00 up
to 99. Each table is represented in one row, which consist of ID, status, number
of loaded workloads (#wklds) definitions, number of triggers (#trigs) definitions,

64 of 153 5. Managing In-memory Schedule Table

number of several attached buffers (#buffs), and last modified time stamp. Blank
row indicates that associated table is empty.

Figure 5.5: Statistics of in-memory schedule tables

Although each SCT represents a workload definition, #wklds appears on the list
does not represent exact number of allocated SCTs. Instead, only number of
SCTs which are really contained workload definition. Puspa allocates spare at
least 10% of number of SCTs to anticipate future update.

The above rule is also applied for TRGs allocation. #trig is number of TRGs
which are really contained triggering-event source definition. Puspa allocates
spare at least 10% of number of TRGs to anticipate future update.

However, when you load new table form XDISCDxx member, Puspa just load it
as it is. Puspa allocates number of SCTs and TRGs exactly as much as number
of workloads and trigger-event definition in XDISCDxx member. Hence, you can
not add nor insert new definitions. To have spare SCTs and TRGs, you should
either reorganize the table or copy it onto new table. Copy of the table will have
at least 10% SCTs and TRGs spare.

5.3. Managing Tables

Table which status as CURRENT means currently addressed by Puspa for
scheduling. When you start scheduling, Puspa will select CURRENT table for
work. Status of CURRENT will remain until you change 2-digit suffix on primary
control panel.

Figure 5.6 shows brief description of each field and/or column of table list panel.
Description can also be found on help panel by pressing F1 key with cursor
anywhere except in selection column, which is the only F1-key sensitive area.
Help panel as shown in figure 5.9 explains each field and/or column more detail.
.

5. Managing In-memory Schedule Table 65 of 153

Figure 5.6: Managing tables

Selection column

Lists input fields on which you may enter action character. Puspa provides 3
action characters for you to manage your in-memory schedule tables. When
you place cursor on this column and press F1-key, a message then appears as
in figure 5.7 hint you what to do as follow:

66 of 153 5. Managing In-memory Schedule Table

Figure 5.7: Message explaining selection column

� S � to display a selected table, as shown in figure 5.11.

o This gives you chance to do further with a table.
� R � to reorganize a selected table.

o When a table has been intensively updated, its inter-link structure can
be less optimal for operation. SCT and TRG spare may shortage. In
such situation, you need to reorganize the table.

o When a table is reorganized, some SCT and TRG spare may added as
necessary.

� D � to delete a selected table.

Be aware once a table is deleted, there is no way to restore it back. You have to
shutdown zJOS and restore its VSAM LDS to get the deleted table back.
Confirmation menu will be displayed following your selection progress to remind
you what you are doing. See figure 5.8 for the appearance of confirmation
menu.

Figure 5.8: Confirmation menu for table selection.

5. Managing In-memory Schedule Table 67 of 153

55..33..11 Obtaining Helps

Figure 5.9: Help panel for table list

Help panel is provided to explain in more detail each field and/or column on the
table list panel. To obtain help, you can either use help-bar or by hitting F1-key.
Figure 5.9 shows appearance of help window.

55..33..22 Selecting and Updating a Schedule Table

Figure 5.10: Selecting a table

By typing action character S on selection column (figure 5.10) and then hit enter-
key, next panel is than obtained, which displaying the selected table as shown in
figure 5.11. Most of management tasks that you can do with source table as
discussed in chapter 3, are applicable for in-memory table here. See chapter 3

68 of 153 5. Managing In-memory Schedule Table

for some more review. The only different is, there are some additional functions
which applicable only for in-memory table:

� Copy table � duplicate content of table to other (empty) table
� Bypass � flags a workload to be bypassed from schedule process
� Hold � flags a workload to be held during schedule process
� Delete � flags a workload as deleted

The other different, which is very principle, that the whole database is floated on
the memory for performance reason. So you are directly working with memory,
instead of dataset and all updates will immediately effective. Saving to dataset
(VSAM LDS) is just to make them permanent.

Figure 5.11: Panel displays in-memory schedule table

The changes you have made here won’t affect the original source table. For
example, if you are working with schedule table 01, then when you finish, all
updates are not affecting your original XDISCD01. There is no way to restore
back from in-memory table to XDISCDnn member. Hence, you are strongly
recommended to keep daily backup of your DIV LDS.

5. Managing In-memory Schedule Table 69 of 153

55..33..33 In-memory Table Internal Structure

In-memory table is built from 2 types of control block, SCT and TRG. Each SCT
holds a workload information, and each TRG holds a triggering event information
for used by all related zJOS subtasks, tasks and routines in either address space
or subsystem scope. Newly loaded table does not have spare SCT and TRG for
new entries. Hence, you can not add entry until you reorganize the table.

Besides the status information, some fields in SCT and TRG contain pointers to
build logic structure of schedule table by interconnecting among SCTs, among
TRGs and between SCT and TRG. The way scheduling and triggering processes
are performed is absolutely based on these pointers. Therefore, these pointers
must never be broken.

55..33..44 Copying a Table

Figure 5.12: Slot field to address table id targeted for copy

Copy table facility is only provided for in-memory table. This is to duplicate the
content of a table to other table. Targeted table must be an empty table. To do
this, first you must select and open the table you are going to copy. Type S on
selection column of table list panel, then hit enter-key. When table is obtained,
you will see on the heading an empty slot labeled “Copy to ID” as shown in figure
5.12 (highlighted). Fill it with targeted table id for duplication. For example, as
shown in figure 5.13, table 07 is targeted to contain the duplicate of table 05.
Note that table 07 must be an empty table. Otherwise, copy request is rejected.
Then, you should not hit enter-key, rather, click the action-bar menu and select
choice 2 (copy to specified target), as shown in figure 5.14. Once you hit enter-
key, then duplication is proceed. When copy is completed, a message explaining
number of duplicated SCTs and TRGs appears on the bottom of the panel as
shown in figure 5.15.

70 of 153 5. Managing In-memory Schedule Table

Figure 5.13: Table 07 is targeted to contain the duplicate of table 05

Figure 5.14: Select action-bar choice 2 to proceed copy to targeted table

Figure 5.15: Message appears when copy process is completed

When you return to table list panel, you will see table 07 is not empty any more,
as shown in figure 5.16. It was just updated with the content of table 05.

When a table is copied, the copy is automatically reorganized as well as resized.
Some necessary spares of SCTs and TRGs are added.

5. Managing In-memory Schedule Table 71 of 153

Figure 5.16: Newly contained table 07 appears on the list

Internally, copy processing is not just duplicating the content of the table. Rather,
it checks and correct all pointers contained in SCTs and TRGs to correct broken
structure. More over, SCTs and TRGs are sorted based on their interconnection
pointers to improve (tune-up) the whole table logic structure.

55..33..55 Reorganizing a Table

Figure 5.17: Attempt to reorganize table 07

When you insert new entries in either workloads or trigger events table, newly
added workload entries need several pointer interlink with the existing linked-list
of workload, newly added trigger event entries need several pointer interlink with

72 of 153 5. Managing In-memory Schedule Table

the exiting linked-list of similar trigger events and with workload origin as well as
triggered workload. When you update trigger event source name, or change step
names of JOB or STC type trigger event source, updated entries probably need
to change their pointer interlink. Such cases will require table to be reorganized.
zJOS user interface will automatically reorganize the table once you finish. You
may, however, reorganize the table manually when you think necessary.

To reorganize a table manually, type R on selected table as shown in figure 5.17
and then hit enter-key. This actually, internally is copying selected table content
to itself. When complete, a message occurs explaining number of reorganized
SCTs and TRGs appears on the bottom of the panel as shown in figure 5.18.

Figure 5.18: Completion message when table 07 was successfully reorganized

When you press enter-key, message disappears and you would see the time
stamps of reorganized table were updated, as shown in figure 5.19.

5. Managing In-memory Schedule Table 73 of 153

Figure 5.19: Time stamps of table 07 were changed upon completion of reorganization

55..33..66 Deleting a Table

Delete a table does not mean to delete the table from memory, instead, empty
the content of the table, and return all allocated SCTs and TRGs back to DIV free
pool. Table id will remains permanently in memory.

Figure 5.20: Attempt to delete a table

Figure 5.21: Firstly appears as updated

74 of 153 5. Managing In-memory Schedule Table

Figure 5.22: Finally, deleted table becomes empty table

To delete a table, type D on selected table as shown in figure 5.20, then press
enter-key. Firstly will appear as updated, as shown in figure 5.21. Then when
you hit enter-key again, you would see that the deleted table becomes an empty
table, as shown in figure 5.22.

5.4. Managing Table Entry

As explained in 5.3.2, most of source table management functions as discussed
in chapter 3 are applicable for in-memory table. In addition, bypass and hold
functions are applicable only for in-memory table. Delete function for in-memory
table is performed differently. Hence all available action characters to manage
an in-memory table are:

� A � Add/insert a new entry (see chapter 3)
� S � Select an entry for further management (see chapter 3)
� T � Display list of associated trigger-event definition (see chapter 3)
� F � Forecast successors list
� B � Flag an entry as a bypassed workload
� H � Flag an entry as held workload
� D � Flag an entry as deleted
� U � Undo flag (restore original flag)
� R � Restore deleted entry (you can also use U)

To obtain help message as shown in figure 5.23, position the cursor on selection
column and hit F1-key.

5. Managing In-memory Schedule Table 75 of 153

Figure 5.23: Help message shows available selection code (action character)

55..44..11 Bypass a Workload

Bypass a scheduled workload means flag a request to Puspa to bypass selected
workload from being scheduled. Schedule is running normal until this workload
is triggered (all trigger events have accomplished). The workload then, however,
is not scheduled. Rather, just assume that the workload was done. Since no CC
is produced, if bypassed workload is used as a trigger to its successor, it always
assumed as complied for triggering. It always supports triggering decision and
gives positive affect.

Figure 5.24: Issuing bypass request for a workload

To bypass a workload, type B on selected entry as shown in figure 5.24, then hit
enter-key. Then, bypass-flag is turned on and it is remarked “bypass” on msg
column as shown in figure 5.25. Once a workload is flagged bypass, it remains
bypassed until you restore its original flag. To restore bypass-flag, type U (undo)
on bypassed workload entry, then hit enter-key.

76 of 153 5. Managing In-memory Schedule Table

Figure 5.25: Bypass request for a workload was confirmed

55..44..22 Hold a Workload

Hold in this case is different with hold schedule process. Hold in this case means
turn hold-flag on, so workload is placed on held status. Whereas, hold schedule
means to hold the process of scheduler. When jobname is specified, schedule
process will be held while specified jobname complete.

When a workload is on hold (hold-flag on), Puspa ignores it from scheduling.
But, if it also used as a trigger for its successors, it is not bypassed. Hence, it still
involves in triggering decision and gives negative affect (opposite to bypass-flag).

Figure 5.26: Attempt to hold a workload

To hold a workload, type H on selected entry as shown in figure 5.26, then hit
enter-key. Then, hold-flag is turned on and it is remarked “on hold” on msg
column as shown in figure 5.27. Once a workload is flagged hold, it remains on
hold until you restore its original flag. To restore hold-flag, type U (undo) on on-
hold workload entry, then hit enter-key.

5. Managing In-memory Schedule Table 77 of 153

Figure 5.27: Hold request for a workload was confirmed

55..44..33 Delete a Workload

Delete function for in-memory table has the same effect for scheduling process
as delete function for source table. The only different, for in-memory table, entry
is not physically deleted. Rather, it just flagged as deleted. Hence, you can easily
restore it back in the future.

To delete a workload, type D on selected entry as shown in figure 5.28, then hit
enter-key. Then, delete-flag is turned on and it is remarked “delete” on msg
column as shown in figure 5.29. Once a workload is flagged delete, it remains
unavailable until you restore its original flag. To restore delete-flag, type U
(undo) or R (restore) on deleted workload entry, then hit enter-key.

Figure 5.28: Attempt to delete a workload

78 of 153 5. Managing In-memory Schedule Table

Figure 5.29: Delete request for a workload was confirmed

Deleted workload will be always assumed no longer exist. Anything related to
the deleted workload also assumed gone. You can’t even select it for review.

55..44..44 Restore a Workload

Figure 5.30: Attempt to restore (undo) deleted entry

Workload which is already flagged as either bypassed, on hold or deleted, can
easily be restored to its original status. Just type U on flagged workload as
shown in figure 5.30 and hit enter-key, then restore is confirmed as shown in
figure 5.31. Its flag is then turned off. Once flagged workload is restored, all
associated information is also restored.

Figure 5.31: Undo request for a workload was confirmed

5. Managing In-memory Schedule Table 79 of 153

5.5. Saving Updates

Unlike when you work with source table, updates in in-memory table immediately
effective to all Puspa processes (within and outside zJOS address space), since
that memory is shared among them as a dataspace. Updates will immediately
be saved into VSAM LDS using DIV function, once you end the table session by
hitting F3 key. Figure 5.32 shows console message indicating that DIV saving is
complete.

Figure 5.32: Console message confirming DIV saving

If updates you have done do not change any pointers, e.g. update timeframe,
week day list, MSG or CMD text, saving is immediately performed once you exit
from table session. If update, however, involve pointers changes, e.g. change
name of workload or trigger event, or insert new entries (workloads or triggers),
table is then reorganized prior to saving.

5.6. Reviewing the Updates

As table logic structure is key factor in most of scheduling and triggering process,
you should not start schedule without reviewing its table first. The first review is
before you exit from table session. Each time you update an entry, do necessary
rechecking the detail of the workload definition, list of associated triggers, and the
detail of each trigger event definition. Make sure each entry is correct before
exit and save. Make necessary correction if you find anything inconsistent with
your plan. Once you exit and save, reselect the table for second review.

The first step of second review is exactly the same as the first review; check the
detail of workload, list of triggers and the detail of each trigger event. Next step
of second review is checking successors list of each workload, by using F prefix
command Figure 5.33 shows an example of successors list in respond to F
prefix command. See whether successors list appeared here is consistent with
your plan. If consistent, then, your update is successfully reorganized. To make
sure the whole table is consistent (strongly recommended), you should review
successors list of every workload.

80 of 153 5. Managing In-memory Schedule Table

Figure 5.33: Successors list forecast of selected workload

Why forecasting successors is not mentioned in the first review? Successors list
forecast, although can also be done in the first review, the result, however, not
very accurate for conclusion. If your update involves pointers changes, F prefix
command may yield wrong successors information before table is reorganized.
Hence, do not make any correction based on successors list forecast, unless you
sure that the table is well organized.

5.7. Fixing Inconsistent Table Structure

When you find inconsistencies in your table, the first step is reorganizing it by
typing R prefix command in tables list panel. Then display the table and check
again consistency of each workload by reviewing its predecessors list (T prefix
command) and successors list (F prefix command). Unless the table is seriously
corrupted (more than one pointer lost), it should consistent.

5. Managing In-memory Schedule Table 81 of 153

If the table still inconsistent after reorganized, then you need to copy it and delete
the original one. Its copy normally should consistent, as copy process involve
sort and reorganize.

If the table copy still inconsistent, then you must restore the VSAM LDS from the
latest backup. That is why you must back it up every day.

82 of 153 6. Operate Scheduling System

Chapter 6 Operate Scheduling
System

All schedules you have prepared will remain inactive until you issue START
request as shown in figure 6.2. Before you start a schedule, you have to make
sure 2 things:

� Each schedule flow has been correctly prepared.
� Schedule table must be clean

6.1. Preparing Schedule Flow

Preparing schedule flow means prepare the logic of each triggering mechanism
of each particular workload against its predecessors and successors to obtain
global operable flow. Wrongly specified triggering mechanism might cause logic
flow stuck in the middle and schedule will never finish. The most important things
you must carefully prepare are:

� Initial flow workloads
� Guarantee always have alternate flows

66..11..11 Initial Flow Workload

Workload which is triggered automatically when schedule is started called initial
flow workload. Such workload must not have predecessors. In other word, must
not have triggering-event sources associated with it. Otherwise, it will not eligible
as initial flow workload.

Other thing you should care is timeframe. Timeframe can potentially affect the
initial flow workload. For example, if it is started earlier than specified start-time,
it will be placed in wait state until start-time is reached, hence you feel as if it is
delayed. In most scheduling system, timeframe of initial flow workload is the only
timeframe for the whole schedule flow. All its successors should not have its
own individual timeframe unless it really needed for very specific reasons.

A schedule table may contain more than one schedule flows. Each flow may
have more than one initial flow workloads. Each flow may join to other flow in a
certain position, or may split into several sub-flows in certain position. There is
no identifier for a flow.

6. Operate Scheduling System 83 of 153

66..11..22 Cleaning Up Schedule Table

Before started, selected schedule table must be clean. When you just select a
schedule table, Puspa automatically refresh it and make it ready for use. Shown
in figure 6.1 is an example when you just selected schedule table 05. Puspa then
make it a current table and refresh it for you.

Figure 6.1: Console message responding a selection to a schedule table

However, when you reuse selected table, Puspa won’t refresh it. You have to do
it yourself by issuing REFRESH request. Otherwise, table will not eligible for
next start.

Normally, cleaning up schedule table is performed once for each schedule cycle.
For example, if your schedule is daily and started at every 22:00:00, regardless
what time schedule is completed, you should not refresh the table until next day
at 22.00.00. Because, once you refresh the table, all status information is no
longer available.

6.2. Starting Schedule

To start the schedule, firstly, select schedule table by filling up schedule id in Suf
column on control panel. Then, issue START request as shown in figure 6.2.
Request is then sent to Puspa in zJOS address space as shown in logged
response in figure 6.2. In zJOS address space, Puspa search all initial-flow
workloads and schedule them.

Figure 6.2: Issuing START request to start a scheduling process

84 of 153 6. Operate Scheduling System

Figure 6.3: START request is sent to Puspa in zJOS address space

At the same time, Puspa changes its state from READY to ACTIVE state. When
you hit enter-key on zJOS control panel once again, Puspa state is then shown
as active as in figure 6.4.

Figure 6.4: Scheduling process is active

When you go to table list panel, current table is also shown active when schedule
is active, as shown in figure 6.5. Although you can still open the table, you will
be warn when open the active table. You should not make any changes in the
active table unless you have urgently reason and rely the risk you might take.

Figure 6.5: Current table is active when scheduling process is active

6. Operate Scheduling System 85 of 153

6.3. Monitoring Schedule Activities

zJOS primary control panel provides a facility to monitor schedule activities and
progress. To reach this facility, you can either select action-bar choice 2 as in
figure 6.6, or just issuing LIST request as in figure 6.7.

Figure 6.6: Attempt to view schedule activities by selecting action-bar choice

Figure 6.7: Attempt to view schedule activities by issuing LIST request

Figure 6.8: Schedule activities and progress logs at initial time

86 of 153 6. Operate Scheduling System

66..33..11 Scheduler Logs

Schedule activities and progress are logged in provided space in schedule table.
Summary of the logs are displayed on scrollable panel. Initially only some initial
flow workloads appear as shown in figure 6.8. Later when scheduling process is
moving forward, more logs appear as shown in figure 6.9. This figure also shows
detail of each field briefly.

Figure 6.9: Schedule activities and progress logs

Workload name, type and system

Workload name is jobname for JOB, STC and probably DSA and DSR type of
workload, or just a name for other workload type. System is name of system on
which workload is or was running. Combined of 3 is an identifier of scheduled
workload.

6. Operate Scheduling System 87 of 153

Date and time

Date and time are actual date- and time-range during which the workload was
executed. Dotted lines on end-date and end-time indicate the workload is still in
progress. End-date and end-time appear only when workload was completed.

Condition

This information describes summary of the final condition when workload was
done. MaxCC is the highest CC ever resulted by the whole workload. Abend is
abend code returned when workload was abnormally ended. If abend is not 0,
maxCC must be 0. If maxCC is not 0, abend must be 0. Both condition values
appear only when workload was completed. Otherwise, they appear as dotted
lines. Condition information is applicable only for batch-job and STC workloads.

Last status column

This column contains information of number of completed steps and remark.
Number of completed steps applicable is only for JOB and STC type of workload.
Other workload types always one step.

Remark is short message describing current status of workload. Workload which
is still in progress or was completed with system code of zero always no remark.
Applicable remarks for this column are:

Abend – JOB or STC type of workload was terminated with nonzero
system code.

Wait TOD – Workload is waiting for schedule start time. When start time
is reached, it will automatically be scheduled and remark then
disappears.

Pls fix ! – JOB or STC type of workload is placed in error state and waiting
for fixing. It can be because of JCL error or experiencing defined
exception condition with hold or cancel and hold action. Once it
got fixed, you may rerun it to continue schedule flow and remark
disappears.

No unit – JOB or STC type of workload was canceled because of no
device unit satisfied. Once it got fixed or device unit is provided,
you may rerun it to continue its schedule flow and remark then
disappears.

No JCL – JOB type of workload is not found in the specified library. Once
the library member representing this workload is provided, it will
automatically be scheduled and remark then disappears. .

Avoided – Workload is not scheduled because of applied special calendar
filtering.

Error – Workload is in undefined error state.

88 of 153 6. Operate Scheduling System

Selection column

The most left column of the panel is a selection column. Action characters are
provided for further monitoring and managing schedule operation. These are:

� S � see detail workload information
� T � see triggering information
� F � display list of successors.
� H � halt a workload from being scheduled
� R � restart schedule from selected workload
� X � rerun finished/unfinished workload
� Z � unconditionally run the workload

66..33..22 Detail Workload Information

When you enter S on selection column of scheduler logs, the detail of selected
workload information is then displayed on window as shown in figure.6.10. Detail
workload information is actually information as shown in logs summary plus
some other information, such as jobid, ASID, day-of-week and list of completed
steps.

To exit and return to previous panel, hit F3 or F12 key.

Figure 6.10: Detail of a scheduled workload

6. Operate Scheduling System 89 of 153

Figure 6.11: Brief description of a scheduled workload detail window

Figure 6.11 shows brief description of each field. This window is just informing
you the detail status of an entry. Nothing else you can do with this panel. When
list of job step status larger than window depth, you can scroll it up and down by
hitting F7 and F8 keys. Scrolling feature follows ISPF standard convention, which
can be per page or based on cursor position.

Involvement of steps list information in workload detail information is applicable
only for batch-job (JOB) and STC type of workloads. If other type of scheduled
workload is selected, such panel appears without step information.

66..33..33 Detail Triggering Information

When you enter T on selection column of the scheduler logs, a list of triggering
information associated to selected workload is then displayed on a popped up
window as shown in figure.6.12. Heading of window shows the same information
as appear on the detail workload window.

90 of 153 6. Operate Scheduling System

Brief description of each field is shown in figure 6.13. This window is not for
update. Rather, just informing you a list of triggering event status so far. Nothing
else you can do with this panel. When list of triggers larger than window depth,
you can scroll it up and down by hitting F7 and F8 keys. Scrolling feature
follows ISPF standard convention, which can be per page or based on cursor
position.

To exit and return to previous panel, hit F3 or F12 key.

Figure 6.12: List of triggers for a scheduled workload

Detail triggering event information panel is applicable only for workload which is
scheduled by complied triggering events. Workload which is scheduled by time
only or unconditionally selected to run, doesn’t have triggering event information.
If T prefix command is issued for such workload, panel is appeared without detail
triggering event information listed. The only information you can get is the status
information in the panel header.

6. Operate Scheduling System 91 of 153

Figure 6.13: Brief description of effective triggers list window

66..33..44 Successors List Information

You can display successors list of the selected workload by entering F prefix
command on scheduler log panel. On the schedule table panel, as discussed in
chapter 5, this command is used to display forecast of successors list. The
appearance of the displayed result is also almost similar. The only difference in
its appearance is an additional column inserted prior to the last column which
may contains remark ‘OK’. Nevertheless, successors list here is not a forecast,
rather, it is a fact of successors. The 4th column shows whether the returned
condition of the workload is complied to trigger each successor. Only successor
with remark ‘OK’ was complied. Remark ‘OK’ indicates compliance of returned
condition of this particular workload. It does not mean that triggering was done,
since the final triggering decision is compiled from all trigger events. Figure 6.14
shows an example of F prefix command response.

92 of 153 6. Operate Scheduling System

Figure 6.14: Display list of successors

6.4. Halt and Restart Schedule

Figure 6.15: HALT and RESTART requests available on schedule log panel

As discussed on par 4.3 chapter 4, during scheduling progress, you may halt,
then resume or restart at a certain position of schedule flow. Such facilities can
be done within schedule log panel. However, as discussed in sub-par 6.3.1 this
chapter and shown in figure 6.15, the schedule log panel provides only H (halt)
and R (restart) action characters. Hence, only halt and restart functions are
available on the schedule log panel.

6. Operate Scheduling System 93 of 153

Example

The following figures describe an example of restarting halted schedule from the
schedule log panel. Schedule is being halted. In figure 6.15, shown R request
is issued to restart schedule at job JTEST02.

Figure 6.16: R request is issued to restart schedule at JTEST02

Puspa immediately confirm by sending message DERSCS348 on console as in
figure 6.17. At the same time, job JTEST02 is restarted and all its successors
are cleaned up for restarting. Appearance of log is then changes as shown in
figure 6.18.

Figure 6.17: Response on console confirming that schedule is restarted at JTEST02

Figure 6.18: Appearance of schedule log when JTEST02 is restarted

6.5. Force a Workload to Run

Automatic scheduling system requires correctness in both scheduled workload
flow and workload content definitions to run perfectly. Incomplete flow definition
may cause the flow stuck when unexpected condition occurred. Incorrectness
content of workload may cause error condition such as abend, JCL error or out of

94 of 153 6. Operate Scheduling System

units range which potentially cause unexpected flow stuck unless anticipated in
the schedule flow definition. Understand that such situation may occur in either
dynamic environment or newly implemented automation, zJOS/Puspa provides a
chance to avoid flow stuck by forcing a workload rerun or run unconditionally.

66..55..11 Rerun a Workload

zJOS/Puspa allows you (if necessary) to rerun workload that has been finished,
by using X prefix command. You must, however, be aware It would recheck its
successors that have not been scheduled. For instant, let say a workload job
JTEST7 is defined in the table. Job JTEST8 is defined to be scheduled when
JTEST7 ended with CC = 0 and job JTEST9 is defined to be scheduled when
JTEST7 ended with CC = 8. In the previous run, job JTEST7 was ended with CC
= 8 and JTEST9 was triggered. Job JTEST8 of course was not be triggered. If
you then rerun JTEST7 and ended with CC = 0, then JEST8 is triggered. If you
want rerun JTEST7 and don’t want JTEST8 run, you must not rerun job JTEST7
this way. Rather, you should execute JTEST7 from outside Puspa.

66..55..22 Unconditionally Run a Workload

Unconditionally run or schedule workload is a facility to give you chance to run a
workload without care of its dependency with predecessors. This actually breaks
the scheduler concept. Such facility is provided only for emergency situation.

Newly implemented automatic scheduling system sometime face an unexpected
situation where schedule flow of a workload gets stuck. If you forget to define
exception handling correctly for a workload, this potentially possible to place the
workload in stuck situation when no successor meets with returned CC. You
may fix and rerun it. If it still returns unexpected CC, the flow will still stuck. In
such situation, if you expect the flow is proceeded unconditionally at this point,
you may use this facility as an emergency action to schedule some or all its
successors by entering Z prefix command in front of each selected successor.

For example, a new workload job JOB1 is added in the schedule table without
exception handling. Its defined successors are job JOB1A and JOB1B. Job
JOB1A is only triggered when JOB1 is ended with CC = 0 and job JOB1B only
when CC = 8. One day, JOB1 is abnormally ended with system code 0C4. Of
course neither JOB1A nor JOB1B is triggered. If no chance at the moment to fix
JOB1 to only return CC equal to 0 or 8, the only way to proceed the flow to either
JOB1A or JOB1B, is forcing either JOB1A or JOB1B to be scheduled by entering
Z prefix command.

6. Operate Scheduling System 95 of 153

6.6. Scheduling Report

Puspa provides a facility to produce report and download it onto the workstation
computer. Report contains information which exactly the same as shown
interactively in scheduling log panel. Rather, it is formed in 132-byte length of
VBA record flat dataset. If AutoXfer is active, report will directly be downloaded
onto workstation unless LOCAL destination is specified.

Reporting facility can be found in reporting-bar of scheduling log panel as shown
in figure 6.19. When you select this bar, pop-down menu appears as shown in
figure 6.20.

Figure 6.19: Reporting-bar supplied in scheduling log panel

Figure 6.20: Reporting-bar menu

66..66..11 Setting up Report

Before you work with reporting facility, the first step is setting up the report to
meet your specific requirement. Not much thing to set, just specifying the name,
destination, dataset prefix and number of lines per page. Click the reporting-bar,
then reporting pop-down menu appears as in figure 6.20. Then select choice 1
to obtain report setup panel. When you click choice 1, a small window is popped
up as shown in figure 6.21, with default information values.

96 of 153 6. Operate Scheduling System

Figure 6.21: Report setting panel

The important thing here is destination. Default destination is LOCAL, which
means you tell Puspa not to download the report dataset. If you want AutoXfer
to download it onto your workstation, you have to change this to the destination
name in which your workstation is included according to your current AutoXfer
configuration. Although AutoXfer can use string “LOCAL” as a name of a true
destination, Puspa, however, will ignore it.

Prefix, destination and report name will be combined with current date and time
to produce flat dataset name into which report is printed out. Hence, all the above
information must comply qualifier format of MVS dataset name.

The last field, number of lines per page is the number of physical line per page of
hardcopy when report is printed to the paper. Since the report uses ASA code
to control the printing mechanism, hence the true number of lines per page will
be adjusted according to ASA code on each line.

To confirm your update, press enter-key. Previous panel is then resumed and
update is effective. To abort the update, press F12 key, or issue CANCEL
command.

66..66..22 Producing Report

To produce the report, click choice 2 on reporting-bar menu as shown in figure
6.20. Puspa take few amount of time while TSCSV module is producing report
dataset. Once dataset is complete, Puspa then browse it using standard ISPF
browse panel as shown in figure 6.22, to show you the content of the report.

6. Operate Scheduling System 97 of 153

Figure 6.22: Upon completion, report is then browsed

Figure 6.23: Completion messages which appear when you leaving browse panel.

Content of the report is exactly the same log shown in scheduling log panel. It is
exactly produced from the logged information. Hence you should care when the
scheduling in still in progress, both log panel and report will only contain finished
workloads. To have complete report, you have to produce again when scheduling
cycle is completed.

Report dataset name is qualified combination of prefix, destination name, report
name as you specified in report setup panel, and current date (Dyyyyddd) and
time (Thhmmssd). In figure 6.23 shown that the produced report dataset name is
IBMUSER.JAKARTA.SKEDULER.D2007326.T0012245. Finally, then message
“Report was downloaded to JAKARTA” is shown to acknowledge you that report
was downloaded to specified destination by using AutoXfer.

Each time report is produced, regardless it is downloaded, it will remain on your
DASD volumes until you delete it. On your choice and responsibility to either
keep and maintain all produced reports or just scratch them.

98 of 153 6. Operate Scheduling System

66..66..33 Re-downloading Report

Choice 3 of reporting menu in figure 6.20 is for download report. This gives you
a chance to download previously produced report. When you click it, a small
panel is popped up as shown in figure 6.24.

Figure 6.24: Download report panel.

On this panel, the most recent report dataset and current destination and report
names appear. You can just hit enter-key to re-download the most recent report,
or alter them and hit enter-key to download the different thing. When you change
either destination or report name (xwtr), it will affect your current setting.

7. Integrated Scheduling 99 of 153

Chapter 7 Integrated Scheduling

System on which workload is running, system on which triggering event source is
running have been many times explained in several previous discussion. These
indicate that the scope of workload scheduling with Puspa is not only involving a
single system. As a modern scheduling system, Puspa provides cross systems
workloads scheduling feature. This is called integrated scheduling.

7.1. Integrated zJOS Network

Integrated zJOS network means, zJOS installation which is distributed among
host on networked-z/OS. Networked-z/OS in this manner is not a multi-sysplex
in cross-coupled (XCF) configuration, instead, is a network of 2 or more
interconnected z/OS hosts in TCP/IP protocol. Both hardware and software
must meet TCP/IP base network requirements. zJOS server on one z/OS system
and several zJOS agents on other hosts which may either z/OS or OS/390
system

77..11..11 Hardware Requirements

To establish TCP/IP network among several z/OS hosts, the following hardware
requirements must be complied.

1. z/Series compatible system processor complete with minimum host basic
configuration, including DASD, console, terminal display station, tape drive
and so forth.

2. TCP/IP capable connection station, such as OSA channel, CTC paired
channel, or ordinary channel with XCA attached and so forth.

3. TCP/IP capable connection media, such as ESCON or FICON optical
cable, satellite sender/receiver equipment, or ordinary telecommunication
cable.

4. IP routing facility as necessary.

All the above materials must be physically installed, connected, setup and well
tested. Review each of them and ask vendor support to make sure everything is
ready.

100 of 153 7. Integrated Scheduling

77..11..22 Software Requirements

To establish TCP/IP network among several z/OS hosts, the following software
requirements must be complied for each z/Series host.

1. Copy of licensed IBM z/OS complete with minimum host basic program
configuration, including JES2, TSO, SDSF, ISPF and so forth.

2. Copy of licensed IBM Communication Server (CS) for z/OS which
minimum consist of VTAM, TCPIP, VMCF and IUCV.

All the above software materials must be physically installed, well setup and well
tested. Review each of them and ask vendor support to make sure everything is
ready and comply with the following states:

• Complete z/OS copy is well setup on each z/Series machine, each with a
unique system name defined in IEASYSxx parameter.

• Complete CS for z/OS is well setup on each z/Series machine, each with
host name (defined in TCP/IP profile) equal to system name (defined in
IEASYSxx).

• When z/OS is booted, make sure the following states are complied:
o JES2, OMVS, VTAM and TCPIP are up.
o API for socket programming is available.
o Ping and/or signon (telnet) is well verified.

Figure 7.1: Networked-z/OS

7. Integrated Scheduling 101 of 153

7.2. Puspa for Integrated zJOS Network

Starting at zJOS version 2.1.3, Puspa is featured with capability to establish an
integrated scheduling on an integrated zJOS network environment. You don’t
need complete zJOS configuration on each z/OS host in the network, instead the
following:
• Complete copy of licensed zJOS/Puspa package on one z/OS system host

which is assigned as scheduling server.
• Copy of licensed zJOS agent on each z/OS system host which is assigned as

scheduling member or client.

All the above software materials must be physically installed, well setup and well
tested. Review each of them and ask vendor support to make sure everything is
ready and comply with the following states:

• zJOS address space (XDI) up with Puspa and zJOS socket server active
with well-setup parameters on scheduling server machine. Make sure
Puspa schedule tables involve all scheduling client machines.

• zJOS agent address space (XDA) which represent Puspa agent up and
active on each scheduling client machine.

Figure 7.2: Puspa for integrated zJOS network

102 of 153 7. Integrated Scheduling

77..22..11 Preparing zJOS Server

If you have already prepared zJOS Server for Sekar, you don’t need to do it
again for Puspa. Because, once it is prepared, server will ready for both Sekar
and Puspa. To implement an integrated workload scheduling, Puspa must be
prepared to accept connection request from each zJOS agent on each z/OS host
in the network which are:

1. Make sure your current zJOS-XDI is version 2.1.3 or higher. Else, you
have to upgrade it to version 2.1.3 or higher.

2. Make sure zJOS agent is ready on each connected z/OS host which
designated to be a member of integrated EMS.

3. Start zJOS server. By default, server is initially down. You can bring it
up manually or automate it later. The command is:

.SVR START

or

F XDI,SVR START

Or issue START request on control panel as shown in figure 7.3:

Figure 7.3: Starting zJOS Server

On control panel, zJOS server then indicated as UP and ACTIVE as shown in
figure 7.4

Figure 7.4: zJOS Server is in active state

In respond to the above command, zJOS server is brought up as shown in figure
7.5. This figure shows host IP and port number (7777) on which server is

7. Integrated Scheduling 103 of 153

listening agent connection request. Although an IP address is displayed, it does
not mean that server will only use this IP. It just shows first IP found in socket
address control block. Server will rather use all available IP addresses.

Figure 7.5: Console message in respond to zJOS Server activation

Message DERSVR543I shows network connection control block (NETCCB) was
built to accommodate agent connection request. Each NETCCB represent one
agent connection. To display list of NETCCBs, issue the following command:

.LIST NETCCB

or

F XDI,LIST NETCCB

Or issue LIST request on control panel as shown in figure 7.6:

Figure 7.6: Issue LIST request to zJOS Server

In respond to the above command, all NETCCBs are then listed as shown in
figure 7.7 and 7.8 Each message DERCMD094I shows remote host name,
agent id, connection status, EMS parameter status, scheduler (SCD) parameter
status and host coding type (E for EBCDIC and A for ASCII). Conn=N describes
no connection yet.

104 of 153 7. Integrated Scheduling

Figure 7.7: List of zJOS agent in respond to LIST request on control panel

Figure 7.8: List of zJOS agent in respond to console command .LIST NETCCB

To know whether zJOS socket server is up, issue .STATUS console command,
or just press enter-key on zJOS control panel. Figure 7.9 shows all zJOS
component status and statistics with server up and active.

Figure 7.9: Status and statistics information on control panel when Server up

zJOS IP port

By default zJOS server uses port 7777. Unless it conflicts with your existing
application, you are strongly recommended to leave this default. To change it,
you have to manually update your current XDISYSxx member in zJOS
parameters library, insert the following parameter:

7. Integrated Scheduling 105 of 153

PORT=nnnn

To make new port number effective, you have to recycle zJOS address space.

77..22..22 Preparing zJOS Agent for z/OS

If you have already prepared zJOS Agent for Sekar, you don’t need to do it for
Puspa. Because, once it is prepared, agent will ready for both Sekar and Puspa.

In an integrated workload scheduling, Puspa runs only in one z/OS system host,
which is designated as scheduling server. Other hosts are called as scheduling
member or client. Each scheduling member needs zJOS agent which runs as
Puspa partner. To have zJOS agent ready on scheduling member, perform the
following 2 simple steps:

1. Install copy of zJOS agent
2. Customize XDA procedure

Install copy of zJOS agent

zJOS agent for z/OS is shipped together in the same zJOS-XDI package. Once
zJOS-XDI package is installed in scheduling server, all products including agent
are installed. Though, you don’t need agent in scheduling server. You rather,
need it for scheduling member. To install it on scheduling member, you can
easily put its copy onto scheduling member as follow:

• If zJOS load library is resided in shared volume, you only need to
catalog it into scheduling member and register it as an APF library in
scheduling member.

• If zJOS load library is resided in non-shared volume, you need to copy
and catalog it into scheduling member and register it as an APF library in
scheduling member.

Customize XDA procedure

zJOS agent for z/OS runs as XDA address space on scheduling member, which
is based on XDA procedure JCL generated during zJOS-XDI installation steps.
Below is an example of XDA procedure:

//XDA PROC V=V2,LVL=19,HLQ=SYS5,SSN=XDA,
// IP=100.99.125.3,PORT=7777
//AGENT EXEC PGM=DERJXA,REGION=0M,DYNAMNBR=99,
// TIME=1440,PARM='SSN=&SSN,PORT=&PORT,IP=&IP'
//STEPLIB DD DISP=SHR,DSN=&HLQ..ZJOS&V&LVL..LINKLIB
// DD DISP=SHR,DSN=&HLQ..ZJOS&V&LVL..LPALIB
//JCLLIB DD DISP=SHR,DSN=&HLQ..ZJOS&V&LVL..SAMPJOB S

106 of 153 7. Integrated Scheduling

PROC card consists of 6 parameter keywords. Keyword V, LVL and HLQ are
just for JCL substitution, not mandatory to zJOS-XDI programs. You can modify
them as necessary, or eliminate them if you prefer to use fixed datasets names,
or just leave it as it is (recommended).

Keyword SSN, IP and PORT are mandatory, since their parameter values are
passed to zJOS agent programs. You can change their default value, but you
can not eliminate each of them. SSN assigns subsystem name for zJOS agent.
Default subsystem name is XDA.

IP keyword specifies scheduling server host IP address. This is the most
important point of which you have to customize. This keyword must be exactly
scheduling server host IP address.

PORT keyword specifies scheduling server host port number which is used by
zJOS server to listen connection request. Although this is the most important
point of customization, unless you have to use another port number, you are
strongly recommended to leave its default, which is 7777. This keyword must be
exactly port number on which zJOS server listen connection requests.

Next card is EXEC card. It specifies that storage and time are unlimited. You
should not change anything in EXEC card. Just leave it as it is.

The rest are 2 DD cards for STEPLIB and JCLLIB. STEPLIB must point to load
library which contains all zJOS-XDI program modules. Since zJOS Agent for
z/OS runs as a privileged program, this load library must be registered as an APF
library. Although most of zJOS-XDI modules reentrant even refreshable, you may
not place them in LPA nor LNKLST concatenation. Both can result unpredictable
problems. Initialization routine of zJOS agent manages them in very unique way
instead. Some modules loaded onto the dynamic LPA, and some others onto the
common segment, by means of CSA. The rest must remain in the STEPLIB.

To avoid maintenance redundancy, since zJOS agent modules are placed and
maintained together with all zJOS-XDI modules libraries, the best configuration is
when STEPLIB address to shared zJOS-XDI load library with zJOS address
space in scheduling server. Otherwise, you must only maintain zJOS load
library in scheduling server, and you have to clone it to all scheduling member.

JCLLIB DD card is library or concatenated libraries of scheduled workloads,
which is used only by Puspa for automatic workloads scheduling. You have to
prepare each JCLLIB on each scheduling member to contain a number of batch-
job exactly as you defined in schedule table. Note, unlike batch-job workload in
server site which can have member name different from jobname, member name
and jobname of workload in client site must be the same.

7. Integrated Scheduling 107 of 153

7.3. Puspa Agent for z/OS

Puspa agent for z/OS is actually zJOS Agent for z/OS, which supports both
Sekar (EMS) and Puspa (automatic scheduling). Once agent is well setup and
up in a z/OS host, this host is then eligible to EMS server as an EMS member, as
well as eligible to scheduling server as scheduling member. Refers to paragraph
7.2.2 to install and setup zJOS Agent for z/OS.

zJOS Agent for z/OS consist of 2 categories of major components, system event
listener and IP socket client. System event listener mostly runs as subsystem
functions and resource managers to capture occurrence of any event including
job status events. Captured events are then posted to socket client task on the
agent address space (XDA) to be transferred to Puspa in scheduling server
machine. Although runs as a subsystem, system events listener initialization is
done on agent address space at the first time agent is started up. Once it get
initialized, it will remain exist on the system until next IPL. When agent is brought
down, agent subsystem is actually still active, rather, it is placed in on hold status
to limit its activities. Hold flag is released when agent is brought back up.

Socket client runs on agent address space to interact locally with system event
listener and remotely with Puspa in scheduling server. When event information
is posted by system events listener via ECB, socket client task forwards it to
Puspa on scheduling server machine via socket.

Besides, in either way, socket client task also executes instruction received from
Puspa. The way Puspa instructs all scheduling members is using socket stream
and sent to each socket client task. Some certain instructions are interpreted by
the socket client task. Some others are forwarded to agent main task for further
interpretation

77..33..11 Starting and Stopping zJOS Agent

To start zJOS Agent for z/OS, issue the following command:

108 of 153 7. Integrated Scheduling

SUB=MSTR argument specifies that agent must run under z/OS MVS master
scheduler. This parameter is required. You must specify this argument explicitly,
exactly as it is. Otherwise, it will result unpredictable situation.

SSN= is an optional argument, to specify subsystem name for zJOS Agent for
z/OS. zJOS agent requires to run as a z/OS MVS subsystem. The default
subsystem name is XDA. Use this keyword if you prefer to use different name.
Valid subsystem name must be 1 to 4 alphameric.

IP= is an optional argument, to specify EMS server IP address on which zJOS
server address space runs. The default IP address is one you have specified in
XDA procedure as explained in paragraph 7.2.2.

PORT= is an optional argument, to specify port number on which zJOS Server is
listening for connection request. The default port number is 7777.

Once the above start command issued, the following steps are then performed:

1. Initialize zJOS Agent subsystem.
2. Attach socket client program as a subtask.
3. Socket client program then does the following steps:

a. Login to zJOS server
b. Request EMS and scheduler parameters to zJOS server
c. Receive EMS and scheduler parameters from zJOS server
d. Tell zJOS Agent subsystem that socket is ready.

7. Integrated Scheduling 109 of 153

Figure 7.10: zJOS agent startup on DYAH2003

Figure 7.10 shows agent startup messages when started on DYAH2003 host,
where Puspa is running on MFOC host at 100.99.122.3. Shown in message
DERAGT621I there are only 3 EMS parameters were sent by zJOS server. No
scheduling parameter is available.

In respond to agent startup on DYAH2003 host, zJOS server on MFOC host
assigns a subtask named zJOS#001 as a server’s worker to be a communication
partner to the agent. In common, subtask name is zJOS#nnn, where nnn is a
sequent number based on its occurrence.

Figure 7.11: zJOS server accepting agent connection request from DYAH2003

As shown in figure 7.11, when login request accepted, server then change
subtask name zJOS#001 to DYAH2003 which represent host name on which the
agent is running, and assign agent ID 022E9730 as shown in figure 7.10.

110 of 153 7. Integrated Scheduling

Next step, server receives request from agent to provide EMS and scheduling
parameters associated with DYAH2003 host. In this case/example, server sent
EMS parameters only, since scheduling (Puspa) is not activated yet.

Once agent up, you do not actually need to stop it unless you want to perform
maintenance tasks or because of regular IPL schedule.

To terminate zJOS agent address space (XDA), issue the following command:

-STOP

Although agent address space is now down, XDA subsystem will still remain in
memory with status active held. Hence to bring it back up, you can just issue the
following command:

-START

77..33..22 Connecting and Disconnecting Agent

As explained in the previous paragraph, once agent is started, it automatically
tries to connect to zJOS server. When zJOS server is already up and host on
which agent is running is already connected to the TCP/IP network in which
zJOS server is connected, as long as IP address and port number are correctly
specified in XDA procedure or arguments of START command, you should found
agent automatically connected. If not, you should check and make sure all the
above stuffs are complied, and then issue the following command:

-CONNECT

Figure 7.12 shows console messages in respond to connection request. Upon
connection, agent is then receiving EMS and scheduling parameters sent by the
server.

To connect agent to other than specified server IP and port in XDA procedure,
issue the following command:

-CONNECT IP=xxx.xxx.xxx.xxx PORT=nnnn

Once issued, zJOS Agent remembers the recently used IP and/or port, and
become default for next CONNECT command issuance.

7. Integrated Scheduling 111 of 153

Figure 7.12: Connecting agent to server

To stop agent interaction activities, issue the following command:

-DISCONNECT

This will cause socket client subtask logoff from server and terminate connection.
Agent address space remains up and ready for next connection request. Figure
7.13 shows console messages in respond to disconnection request, which is
responded by server as shown in figure 7.14.

Figure 7.13: Disconnecting agent from server

Figure 7.14: Server response when agent is signing off.

112 of 153 7. Integrated Scheduling

In case there is a problem with networking, for example if TCP/IP stack (address
space) is unexpectedly down, DISCONNECT request will not be responded
correctly, you have to use DROP to force detach socket client subtask as follow:

-DROP

Take a note that DROP command is for emergency case only. It just to issue
DETACH to detach socket client subtask, to give you a chance to shutdown the
agent normally. Without dropping the socket, agent will not be able to shutdown
normally.

You should not issue DROP to do normal disconnection. Once DROP is issued,
you should not issue CONNECT to reconnect to the server. No guarantee that
stable interaction activities will be achieved. To have better reconnection, you
should issue STOP then START to recycle agent address space.

77..33..33 Controlling zJOS Agent

Display agent status information

To get agent status information summary, issue the following command:

-STATUS

Then agent current status is displayed as shown in figure 7.15. Agent identifier,
subsystem name and worker (work partner) name are displayed as well as
server IP address and port number. Current interaction status with and number
of received parameters from Sekar and Puspa are also displayed.

Figure 7.15: Agent summary of status information.

Display list of parameters received from server

There are 2 types of parameters which are received from zJOS server, EMS and
scheduling parameter. Each scheduling parameter is represented by end-of-task
control block (EOT). Issue the following command to display all EOTs:

7. Integrated Scheduling 113 of 153

-LIST SCD or -LIST EOT

XDA then display response as shown in figure 7.16.

Figure 7.16: Agent show list of scheduling parameter

Each EMS parameter is represented by event parameter control block (EVB).
Issue the following command to display all EVBs:

-LIST EMS or -LIST EVB

Requesting scheduling parameters

When agent is started, connection to server normally establish automatically.
Then server also automatically send portion of EMS parameters designated to
this agent, when one ready by the time. Else, zJOS server will send later as
soon as one ready.

In case server got missed, you can ask server to send scheduling parameter to
this agent by issuing the following command:

-GET SCD

Agent then reissue request to the server.

77..33..44 Remote Command

Remote command is actually a part of EMS functions, instead of scheduling.
Though, in an integrated scheduling system, such facility could be useful to either
to support scheduling functions or just a tool to control scheduling agent from
server site. Because, by using remote command facility, you can execute any
valid console command (including agent command) on any connected agent site.
Note that, remote command facility is just to send command text and request to
agent to execute it. It does not return the respond nor condition code back to the
server.

When an integrated EMS is established on your integrated zJOS network
environment, by means zJOS/Sekar, you then can pass any command from EMS
server to any connected EMS client. This facility called remote command facility.
To issue remote command, use the following syntax:

114 of 153 7. Integrated Scheduling

RCMD hostname command_text

or

RC hostname command_text

Where:
Hostname must be a valid EMS member host name
Command_text is a string containing command verb and its arguments.

Figure 7.17: Issuing remote command to DYAH2003 from EMS server

Figure 7.17 shows RC DYAH2003 -STATUS and RC DYAH2003 D A,L are
issued on EMS server console. Both command texts are then sent to DYAH2003
site for execution. On DYAH2003 site, both command are received and then
executed as shown in figure 7.18.

Figure 7.18: Agent on DYAH2003 responding remote command from MFOC (server)

Remote command is actually one of basic functions in integrated EMS feature of
zJOS/Sekar. This function is used by Sekar to perform actions in EMS member.
Hence, remote command is useful indicator to verify whether you have setup an
integrated EMS correctly.

7. Integrated Scheduling 115 of 153

77..33..55 Remote Job Submission

Remote job submission is another EMS facility which is actually a special form of
remote command to ask agent to submit a job. To issue remote job submission,
use the following syntax:

RJOB hostname jobname

Where:
Hostname must be valid EMS member host name
Jobname is a string containing jobname. Jobname must be a member name of
job JCL library pointed by JCLLIB in XDA procedure.

7.4. Planning The Integrated Scheduling

Mainframe is normally used to handle large scale business computing, especially
when extra security and high transaction intensity are prioritized. In modern
mainframe system application, such objectives could be implemented in several
ways. The most popular ways are:

� Conventional disaster recovery system
� Geographically dispersed parallel sysplex (GDPS)

Conventional disaster recovery system

This way is very simple. One mainframe is connected remotely to production
mainframe and act as disaster recovery (DR) machine. Connection is based on
I/O channel protocol and implemented using high speed optical channel cable.

Workload movement from production system to DR machine is handled by either
one of special data mover, remote copy or mirroring technology. Remote copy,
as illustrated in figure 7.19, is older technology which is a program on either one
of both CPUs. Whereas, mirroring, as illustrated in figure 7.20, is an integrated
modern disk storage technology, which is running on disk storage subsystem and
independent from CPU. DR machine is just like insurance, sleeping all the time
until disaster on production site happens.

116 of 153 7. Integrated Scheduling

Figure 7.19: Conventional DR based on remote copy data mover

Figure 7.20: Conventional DR based on mirroring data mover

7. Integrated Scheduling 117 of 153

Geographically dispersed parallel sysplex (GDPS)

GDPS is a modern mainframe configuration which is supported by parallel
sysplex technology. Unlike in conventional mainframe system where DR host
appears as a separate system. Within GDPS system there is no separate DR
machine. Each machine contributes as a part of production system. The whole
GDPS configuration appears as a single system.

Workload movements are managed perfectly by workload manager (WLM) and
supported by advanced copy/mirror technology which runs independently on disk
storage subsystem. Data and backup are perfectly managed on each machine.
The way workloads are managed illustrated in figure 7.21. When one machine
disaster, workloads on that machine are automatically moved to and brought up
on other machines.

GDPS guarantees no machine is sleeping. All machine are working together to
support production. Hence, when full capacity of DR is recruited as production
image in GDPS, it becomes an additional extra power, and of course the whole
performance is drastically increased. You don’t pay extra cost for just a sleeping
machine.

Figure 7.21: GDPS system

118 of 153 7. Integrated Scheduling

77..44..11 Puspa Concept versus GDPS

As discussed previously in this chapter, GDPS is a way to implement an efficient
and secured mainframe system. No separate DR machine, but each machine is
production as well as DR machine.

zJOS/Puspa concept of integrated scheduling is one of GDPS simpler approach.
With Puspa, you will be able to manage workload on all hosts within integrated
zJOS network centrally. Relationships and dependencies between a workload
with either its predecessors or successors are dispersed inter-hosts as illustrated
in figure 7.22. Combined with integrated EMS (by means zJOS/Sekar), you will
have a fully integrated automation system.

Figure 7.22: Puspa concept of integrated scheduling

Although workloads movement in the integrated zJOS network is not as flexible
as GDPS which is supported by parallel sysplex technology, Puspa is easier and
cheaper to implement. Nevertheless, Puspa is not alternative for GDPS, rather,
just a simpler approach to GDPS. You will even achieve much better integrated
scheduling system when you implement Puspa in the GDPS system.

Besides, not every system is feasible for GDPS. If your system has unique
workloads characteristics which is impossible to be distributed, then GDPS is not
feasible for you. You will pay high cost for nothing.

7. Integrated Scheduling 119 of 153

With Puspa, you get lucky if your workloads are distributable. Otherwise, nothing
to loose since you can still use Puspa for normal workloads scheduling system.
You don’t use zJOS agent, so you don’t need to pay it.

77..44..22 Modernize Conventional DR with Puspa

GDPS is a new technology in this decade, whereas most of mainframe shops are
already using conventional system. To migrate existing conventional system to
GDPS is not a simple effort. New parallel sysplex hardware is installed. System
hardware configuration totally changed. Software on each particular machine is
also reconfigured to accommodate MULTIPLEX configuration. All efforts need
high level expertise to handle.

Figure 7.23: Conventional system configuration

Unless you feel very urgent to migrate to GDPS system, you can modernize your
conventional without too much critical efforts with zJOS/Puspa. The first step is
installing and implementing workload scheduling system with Puspa on your
production machine. Have zJOS agent ready on DR machine, hence, logically
zJOS network is ready on your conventional system. Tune schedule flow with
better triggering mechanism (by means step level triggering) to obtain the best
turn-around time.

120 of 153 7. Integrated Scheduling

Second step is learning your workloads characteristics to prepare workloads
grouping. Which workloads are logically and physically possible to be separated
as illustrated in figure 7.24. This step is a key and also required even when you
implement GDPS.

Figure 7.24: Preparing for workload grouping

Third step is workloads grouping. All separable workloads are then moved onto
separate area in production system as illustrated in figure 7.25. This to make you
easier to move them onto DR machine. Meanwhile, on DR machine you do the
same thing.

Fourth step is distributing workloads groups and update Puspa schedule table. It
does not mean you need to physically move the all content of desired group onto
DR machine. Rather, just make data of desired group on DR machine as current
data. Because, similar groupings should already exist on DR machine since you
have grouped both sites during third step. At the same time, you have to update
Puspa schedule table for all moved workloads. Unless the content of some
moved workloads are changed, this is a very simple effort. All you need is just
change the name of system for all moved workloads.

Unlike flexibility of GDPS, with Puspa, workloads are distributed permanently on
each host. For balancing, you need to measure each particular workload.

7. Integrated Scheduling 121 of 153

Figure 7.25: Workload grouping

Figure 7.26: Final of workload grouping

Fifth step is change data moving direction. Once moved group of workloads was
accommodated in the scheduling system, the moved workloads group then will
be operated on DR machine in next operation cycle. Therefore, in next cycle, the

122 of 153 7. Integrated Scheduling

separate DR machine will no longer exist. Both sites become production sites.
Therefore, moved workloads group must be backed up by the origin machine as
illustrate in figure 7.26. As consequence, data moving direction of moved group
must be changed to the opposite way.

Finally, your conventional system is now changed look like GDPS. Both sites are
production systems and both sites are DR systems. Now you will achieve much
better system performance since the production power is now doubled.

8. Operate Integrated Scheduling System 123 of 153

Chapter 8 Operate Integrated
Scheduling System

Operating an integrated scheduling system with Puspa is vary similar as when
you operate standalone scheduling system as discussed in chapter 6. The only
different is just starting zJOS server task on server site and starting zJOS agent
address space on each client site. See figure 7.3 and 7.4 in chapter 7 to review
how to start zJOS server task. And see also par 7.3 in chapter 7 to review how
to start zJOS agent address space.

8.1. Reviewing Agent-Server Connection

Assuming that zJOS server is up on scheduling server site, then when you start
zJOS agent address space on scheduling client site, agent automatically sign on
to server as shown in figure 8.1 Once agent is connected, server then sent all
defined EMS and scheduling parameters to the agent as shown in figure 8.2.
This the critical point that you should review.

Figure 8.1: Messages in agent site showing agent startup and sign on to server

124 of 153 8. Operate Integrated Scheduling System

Figure 8.2: Messages in server site showing agent startup and sign on to server

88..11..11 Reviewing Server Site

On server site, connection can easily be reviewed from zJOS control panel. On
the product status region, Net Server component should be stated as UP and
ACTIVE as shown in figure 8.3. On the statistics logs region, see highlighted
part. Major subtasks are at least 10. When Puspa state ACTIVE, at least is 11.
You can also check that the number of active network agents should increase as
much as number of newly connected agents.

Figure 8.3: Connection status and statistics on control panel.

8. Operate Integrated Scheduling System 125 of 153

To see more detail regarding agent connection, you can obtain list of agents by
issuing LIST request on Net Server command slot as shown in figure 8.4. List of
agents is then displayed on logs of control panel as shown in figure 8.5.

Figure 8.4: Requesting list of agents.

Figure 8.5: List of agents.

On the list, status of each agent is shown discussed in sub par 7.2.1 in chapter 7.
For integrated scheduling, each desired agent must have conn=Y and SCD=Y,
telling that agent is connected and scheduling parameters has already been
received.

88..11..22 Reviewing Agent Site

Figure 8.6: Agent status displayed by agent on agent site.

To see detail status of each agent, you need to issue –status command on
console of system host on which agent is running. Figure 8.6 shows agent status
in respond to –status command. Status information involves agent ID, name

126 of 153 8. Operate Integrated Scheduling System

of agent subsystem, name of agent (IP host name), server IP address and port
number, and agent readiness to work with Sekar and Puspa.

#EVB – number of EMS parameters

Since each EMS parameter is contained in event parameter control block (EVB),
so number of EVBs represents number of EMS parameters. This value indicates
whether agent acts as Sekar agent. To list all EMS parameters on this agent
site, issue –list ems command on agent site console as shown in figure 8.7.

#EOT – number of scheduling parameters

Since each scheduling parameter is contained in end-of-task control block (EOT),
so number of EOTs represents number of scheduled workload resided on this
agent site. This value indicates whether agent acts as Puspa agent. To list all
scheduling parameters on this agent site, issue –list scd command on agent
site console as shown in figure 8.7.

Figure 8.7: List of EMS and scheduling parameters on agent site.

8.2. Monitoring Integrated Schedule

Once agents-server connections are establish and each agent is ready to act as
Puspa agent, an integrated scheduling system is ready to operate. Although
internally some networking activities are added, to operate integrated scheduling
system is nothing specific. You can refer to chapter 6 for detail guidance.

88..22..11 Monitoring Syslog

Networking activities are logged in both agent and server syslog. Figure 8.8
shows scheduling activities logged into server site syslog. Shown that each time
a remote workload is scheduled, an NACCB (network access communication
control block) is sent to targeted agent. NACCB is a common vehicle in zJOS

8. Operate Integrated Scheduling System 127 of 153

network environment to exchange information including requests and responses
between agents and server in IP streaming mode.

Figure 8.8: Logged activities in server site syslog.

Figure 8.9: Logged activities in agent site syslog.

In agent site syslog, networking activities are not explicitly described as on server
site. Most messages only explaining workload activities. The only indication is a
remark of Send=Y on message DERARM799I as shown in figure 8.9, explains
that the workload status information is being sent to server. Although not explicit,
all agent activities are supposed to be networking activities, since agent has no
initiative unless requested by zJOS server.

128 of 153 8. Operate Integrated Scheduling System

88..22..22 Monitoring Schedule Log

Although the way remote workload information collected is totally different, but it
is logged into the same place and formatted with the same template as local
workload. Hence its appearance and the way you monitor on schedule log panel,
almost no different. The only thing to indicate is system name, which is not local
system name. In figure 8.10, MFOC is the name of local system, on which zJOS
server is running. Hence, any workload with system name not MFOC must be a
remote workload. Figure 8.10 shows remote jobs, JRMT001 and JRMT002
while in progress. They look the same as local jobs.

Figure 8.10: Remote jobs look no different as local workloads while in progress

Figure 8.11 shows completed remote workloads. They also look no different to
local workloads. Regardless the status is in progress or completed, you can
explore deeper information of both local and remote workload in the same way.
Type S on selected workload and press enter-key to obtain its detail information,
as shown in figure 8.12. .

8. Operate Integrated Scheduling System 129 of 153

Figure 8.11: Remote jobs look no different as local workloads when completed

Figure 8.12: Detail information of a remote job looks no different as local workloads

130 of 153 8. Operate Integrated Scheduling System

All detail information that you found on local workload panel are also provided on
remote workload panel.

To explore triggering information, type T on selected workload and hit enter-key.
Triggering information is then obtained as shown in figure 8.13.

Figure 8.13: Triggering information of a remote job looks no different as local workloads

9. Commands and Messages Reference 131 of 153

Chapter 9 Commands and
Messages Reference

9.1. Puspa Commands Facilities

Sekar console commands can be issued in 3 ways:

1. Via zJOS subsystem (on console)
2. Via MODIFY command to zJOS address space (on console)
3. Via zJOS control panel (in ISPF session on TSO)

99..11..11 Entering Command via zJOS Subsystem

zJOS subsystem provides a gate for you to enter Puspa command on z/OS MVS
console. Subsystem recognize all zJOS command when either prefixed by dot
sign (.) or XDI with a blank (“XDI “). The common command syntax is

prefixSCD request

or for more specific is:

.SCD request

or

XDI SCD request

Where request is a service you want to obtain.

99..11..22 Entering Command via MODIFY
 :
Alternatively, you can also pass command to Puspa via z/OS MVS MODIFY
system command on console to zJOS address space. The command syntax is:

MODIFY XDI,SCD request

132 of 153 9. Commands and Messages Reference

or

F XDI,SCD request

Where request is a service you want to obtain.

99..11..33 Entering Command via zJOS Control Panel

The second alternative to issue Puspa command is via control panel. This facility
available on TSO/E terminal while in ISPF session as discussed in chapter 7. To
issue command, just enter the request on Puspa command slot as shown in
figure 9.1. See chapter 6 for further explanation.

Figure 9.1: Puspa command slot on zJOS control panel

9.2. Puspa Commands Reference

This paragraph only explains request verb instead of full command text.

99..22..11 HALT request

Syntax on console:

HALT [JOB=jobname]

Syntax on control panel:

HALT or H [jobname]

Where jobname is name of workload you optionally desire to be halting
point.

9. Commands and Messages Reference 133 of 153

Function:
Halt the progress of scheduling system. . .

99..22..22 HOLD request

Syntax on console:

HOLD JOB=jobname

Where jobname is name of workload you optionally desire to be halting
point.

Function:
Hold the scheduling progress of specified workload. . . .

99..22..33 INIT request

Syntax on console:

INIT

Syntax on control panel:

INIT

Function:

Load schedule table onto memory and prepare all scheduling related
processes to support Puspa to READY state. .

Note:
INIT is required only at the first time schedule table is loaded. Once a
table is loaded onto DIV, subsequent issue will be ignored.

99..22..44 LOAD request

Syntax on console:

LOAD

Syntax on control panel:

LOAD

134 of 153 9. Commands and Messages Reference

Function:

Load schedule table onto memory.
Note:

LOAD effective only at the first time a schedule table is loaded. Once a
table is loaded onto DIV, subsequent issue will only make addressed
loaded table becomes a current table.

99..22..55 REFRESH request

Syntax on console:

REFRESH

Syntax on control panel:

REFRESH or REF

Function:
Cleanup all current scheduling status in schedule table and prepare it for
next scheduling cycle. . .

99..22..66 RELOAD request

Syntax on console:

RELOAD

or

RELOAD TAB=nn

Where nn is 2-digit suffix to address schedule table XDISCDnn member of
zJOS PARMLIB

Syntax on control panel:

RELOAD

Function:

The same as LOAD request, load schedule table onto memory.

Note

9. Commands and Messages Reference 135 of 153

On control panel reload has the same effect as load request. Puspa
uses specified nn in Suf column.

99..22..77 RESTART request

Syntax on console:

RESTART JOB=jobname

Syntax on control panel:

R jobname

Where jobname is name of workload you desire to be a starting point.

Function:
Restart the progress of halted scheduling system. . .

99..22..88 RESUME request

Syntax on console:

RESUME

Syntax on control panel:

RESUME

Function:
Resume the progress of halted scheduling system. . .

99..22..99 START request

Syntax on console:

START

Syntax on control panel:

START or S

Function:

136 of 153 9. Commands and Messages Reference

Activate scheduling process.

Note:

START can only be issued when Puspa is in READY state

99..22..1100 STOP request

Syntax on console:

STOP

Syntax on control panel:

STOP

Function:

Inactivate scheduling system.

Note:
Unless for maintenance purpose and really recommended by XDI support
personnel, you should not stop scheduler.

9.3. zJOS System Commands Facilities

To manage and control the zJOS address space and subsystem, zJOS provides
some commands. All zJOS commands can only be issued via MODIFY (F)
command or zJOS subsystem. MODIFY command syntax is:

F XDI,request

Subsystem recognize all zJOS agent command when either prefixed by dot sign
(.) or XDI with a blank (“XDI “). Hence, the command syntax is

.request

or

XDI request

Where request is a service you want to obtain.

9. Commands and Messages Reference 137 of 153

9.4. zJOS System Commands Reference

This paragraph only explains request verb instead of full command text.

99..44..11 ASCB request

Syntax

ASCB

Function:
List all ASCBs and each with detail information.

99..44..22 HELP request

Syntax

HELP

Function:

Display zJOS command reference summary on console.

99..44..33 LIST request

Syntax

LIST object

Where:

object is either NETCCB, PIT, Q

Function:
LIST NETCCB � Lists existing chained NETCCB.
LIST PIT � Lists all captured JES PIT
LIST Q � List all enqueued zJOS resources.

99..44..44 RCMD request

Syntax

RCMD hostname command_text

Where:

138 of 153 9. Commands and Messages Reference

hostname is host name of targeted system.
command_text is complete command text to be sent to agent site

Function:

Send command to agent site and ask agent to execute it.

Notes:
1. RCMD command only supported by zJOS subsystem
2. Command does not need prefix. Just issue as appeared in syntax.

99..44..55 RJOB request

Syntax

RJOB hostname jobname

Where:

hostname is host name of targeted system.
jobname is name of job which is a member of JCLLIB

Function:

Send request to agent site to submit a job which is addressed by jobname.

Notes:
1. RJOB command only supported by zJOS subsystem
2. Command does not need prefix. Just issue as appeared in syntax.

99..44..66 SHUTDOWN request

Syntax

SHUTDOWN

Function:
Bring zJOS address space down.

99..44..77 START request

Syntax

START

Function:
Bring zJOS address space up.

9. Commands and Messages Reference 139 of 153

Notes:

1. START command not available at the first time startup of zJOS during
IPL cycle.

2. START command can not be issued via MODIFY command.

99..44..88 WTO or MSG request

Syntax

WTO text

Function:

Issue WTO macro to send message text to console
Notes:

1. Message is highlighted.
2. Message is deleted by subsequent WTO issuance, by means of DOM

macro. .

9.5. zJOS Agent Commands Facilities

To manage and control the agent, zJOS provides some commands for agent
which available only on agent site. All agent commands can only be issued via
zJOS agent subsystem. Subsystem recognize all zJOS agent command when
either prefixed by minus sign (-) or XDA with a blank (“XDA “). Hence, the
command syntax is

-request

or

XDA request

Where request is a service you want to obtain.

9.6. Agent Commands Reference

Since agent command is only prefix and request verb, this paragraph only
explains request verb prefixed with minus sign. To use XDA prefix, you can
easily just substitute minus sign with “XDA “ string.

140 of 153 9. Commands and Messages Reference

99..66..11 CONNECT request

Syntax

-CONNECT [IP=server_address] [PORT=server_port]

Where:

server_address is IP address or name of server, and
server_port is server port number (default is 7777)

Function:

Requesting connection (sign-on) to zJOS server.

99..66..22 DISCONNECT request

Syntax

-DISCONNECT

Function:
Requesting disconnection (sign-off) to zJOS server.

99..66..33 DROP request

Syntax

-DROP

Function:
Force socket task to be detached from zJOS agent address space. .

99..66..44 GET request

Syntax

-GET component_name

Where component_name is either EMS or SCD.

Function:
Requesting server to send EMS or scheduling parameters.

9. Commands and Messages Reference 141 of 153

99..66..55 HELP request

Syntax

-HELP

Function:

Display zJOS Agent command reference summary on console.

99..66..66 LIST request

Syntax

-LIST component_name

Where component_name is either EMS or SCD.

Function:
List down EMS or scheduling parameters received from server.

99..66..77 START request

Syntax

-START

Function:
Bring up agent address space.

Note:
START command can not be used for first start along with IPL cycle. .

99..66..88 STOP request

Syntax

-STOP

Function:
Bring down agent address space.

142 of 153 9. Commands and Messages Reference

9.7. Puspa Messages

All Puspa messages have the following common format:

DERXXXYYYZ Message_text

DER indicates product package of zJOS-XDI

XXX indicates component id, by which the messages is issued. The same
message text could be issued by more than one component.

YYY is message number, indicates the message id.

Z is message suffix code, indicates the status of message.

• I – informational message
• W – warning
• E – error message
• A – needs user action
• T – logic tracing information

Message_text is information description of the message. Most of zJOS XDI
messages have clear and simple information.

Complete messages reference can be found in zJOS-XDI Messages Reference
manual.

10. Advanced Tricks 143 of 153

Chapter 10 Advanced Tricks

Implementing automatic scheduling system sometime need more creative tricks
instead of just using provided standard scheduler functions and features such as
various triggering event types (including step-level pipelining using end-of-step
event), basic and advanced condition filtering, timeframe filtering, calendar and
special calendar filtering. Sometime, certain specific environment need more
than that. For example, workload that runs on the off days needs to be varied in
sequent rule. In certain situation, some workloads need to be scheduled outside
its defined clock time range, is more extreme example.

Most of tricks in handling the above examples are programming. If you license
zJOS/Sekar, you can use the advantage of system event automation functions
and feature to help you find the simplest trick for such scheduling cases. It can
be implemented as:

• Event entry which trigger action to trigger scheduled workloads.
• Event entry which trigger rule to trigger scheduled workloads.
• Event entry which trigger JOB submission or STC startup to trigger

scheduled workloads.
• Scheduled JOB or STC which executing rexx program to create desired

condition or event to trigger other scheduled workloads.
• Rexx program inserted as a step in either scheduled JOB or STC to create

desired condition to control subsequent steps and/or create desired event
to trigger other scheduled workloads.

10.1. Using Sekar Standard EMS Features

You may use standard EMS functions of zJOS/Sekar for advanced scheduling
trick. For example, workload JOB1 is scheduled at 21:00:00 every working day.
But, sometime in certain situation, JOB1 has to be started earlier. Since JOB1 is
followed by some successors, it requires to be handled by scheduler by means
Puspa. If it is defined in scheduler table with start time 21:00:00, you must use
unconditional schedule function, by means Z prefix command, to schedule JOB1
earlier. This function, however, need full authorization which is not for operator,
hence administrator has to come down and login to zJOS.

The easier way is using message event to trigger JOB1 as follow:

• You change schedule definition timeframe to unrestricted time 00:00:00 to
24:00:00.

• Define trigger for JOB1 with event type of MSG with unique message text,
let say ‘RUNJOB1’.

144 of 153 10. Advanced Tricks

• Define TOD event in EMS table to fire .WTO command at every 21:00:00.
Use the same text (‘RUNJOB1’) as you have defined in JOB1 triggering
event definition for .WTO command argument.

Once EMS table is activated, .WTO command will be fired at every 21:00:00 and
a message with designated text then occurred. The occurrence of this message
then triggers JOB1. Hence, in normal situation, workload JOB1 is triggered at
every 21:00:00. If certain situation you desire JOB1 to run at 19:00:00, you can
easily call operator to issue .WTO RUNJOB1 command at 19:00:00. When the
.WTO is issued (by operator), message ‘RUNJOB1’ is occurred and JOB1 is then
triggered and run. Next, when the same message is occurred from EMS at
21:00:00, is ignored because JOB1 has already been done. The next day, JOB1
back to normal which run at 21:00:00 following ‘RUNJOB1’ message occurrence.

10.2. Using zJOS Rexx Functions

zJOS/Sekar provides package of 13 rexx functions for various automation
application purposes, including scheduling system. The most popular functions
which are used in advanced scheduling system are zjcal(), zjholday(), zjcmd(),
zjwait(), zjwto() and zjwtor(). Please refer to zJOS/Sekar chapter 6 par 6.4 for
detail description of each function.

Example 1

This example show you how to schedule JOB1 at 20:00:00 everyday except on
month-end day, which is as early as possible once all predecessors completed.
Using standard scheduler function, you have to define JOB1 with start time
20:00:00 and select exclusion on EMON checkbox to avoid it from being
scheduled on month end day. Then, define JOB1 using different name (eg.
JOB1EMON for member name JOB1) with start time 00:00:00 and select EMON
to make it only runs on month end day.

As member name is only supported for JOB type of workload, the above example
is applicable only if workload type of JOB1 is JOB (batch job). If JOB1 is an
STC, this case becomes more complex. Using Sekar rexx function, however,
you would have the simplest solution by coding the following one line rexx:

If zjcal(‘EMON’) = ‘N’ then X = zjwait(’20:00:00’)

Use either batch rexx or batch TSO step to execute the above single line rexx
and insert it as the first step of JOB1. Then, schedule JOB1 without start time
filtering (00:00:00). Although JOB1 runs immediately once all its predecessors
completed, its real step will be delayed until 20:00:00 everyday except on month
end day. JOB1 can be STC or JOB.

10. Advanced Tricks 145 of 153

If you don’t want JOB1 shown in active workloads list before 20:00:00 except on
month end day, you can easily pull this rexx step out from JOB1 and place it in
dummy workload JOB0. Then, schedule JOB0 without start time and move out
all JOB1 predecessors to trigger JOB0. JOB1 is then scheduled as successor of
JOB0 with EOJ of JOB0 as the only trigger event source.

Example 2

All steps of JOB2 were designed to produce datasets DATA.AB1 and DATA.AB2
for use by JOB2A and JOB2B on everyday as input. Newly added application
feature requires a new job, JOBX, to be added into existing schedule flow with
some specific requirements. On every working day, JOB2A and JOB2B.require
an additional input dataset DATA.ABX which is produced by JOBX. Both job
JOB2A and JOB2B have already been plotted in the schedule table to trigger
complex job flow at step level pipelining mechanism which impossible to be
modified. As user doesn’t want to separate both JOB2A and JOB2B each into 2
jobs for working and off days for maintenance and complex schedule flow
reasons, there are 2 problems raised here:

1. During off days, job JOB2A and JOB2B are triggered by end of job JOB2,
but, during working days by job JOB2 and JOBX. You can not place JOB2
and JOBX in the same group as both predecessors must be ANDed to
have final compliance during working days. If them ANDed, however, they
will never comply to trigger job JOB2A and JOB2B during off days since
no JOBX involve.

2. To avoid JCL error, dataset DATA.ABX must always exist unless the way
job JOB2A and JOB2B allocate dataset DATA.ABX are dynamically by
using SVC 99. In this case, they use JCL instead.

Such case is too hard for ordinary scheduling technique. The only way to do so
is by separating JOB2A becomes JOB2A and JOB2AX, and JOB2B becomes
JOB2B and JOB2BX. Job JOB2A and JOB2B are only triggered by JOB2 and
only access DATA.AB1 and DATA.AB2. Job JOB2AX and JOB2BX are triggered
by combined JOB2 and JOBX (ANDed) and access DATA.AB1, DATA.AB2 and
DATA.ABX. Unfortunately, subsequent successors are complex flows and user
doesn’t agree that way.

Being an automation administrator, you should more creative to safely add JOBX
into the existing schedule flows. Your best chance is JOBX. Define JOBX in
schedule table as necessary which is also as a predecessor to trigger job JOB2A
and JOB2B together with JOB2 (ANDed) on everyday. Insert batch rexx program
step in between dataset DATA.ABX allocation step and other subsequent steps.
Inserted rexx step is to abort all subsequent steps if current day is off day. There
are many ways to achieve such mechanism. Here is one of possible ways:

146 of 153 10. Advanced Tricks

If zjcal(‘OFFD’) = ‘Y’ then x = zjcmd(‘CANCEL JOBX’)

The above one line rexx program cancels JOBX if run on the off days. Hence
JOBX might be ended with CC = 0 or abend 222. Then you update triggers list
for JOB2A and JOB2B by adding a triggers group contains JOBX with CC = 0
and JOBX with abend 222. As both events are in a group, compliance of either
one will be used as group compliance.

Index 147 of 153

Notes

